行のキーワード 625ワード

生物多様性

水産生物における遺伝的多様性モニタリングシステムの構築

前の画像
次の画像
特徴・独自性
  • 遺伝的多様性の維持は、水圏生物の持続的利用や保全を図る上で重要なポイントです。本研究は、DNA分析と集団遺伝学的な解析を主なツールとして、1)自然集団の遺伝的構造や系統地理を明らかにして保全方策を提言し、2)栽培漁業の対象となっている魚介類について、放流種苗の遺伝的特徴や海域での種苗の生残率または再生産への寄与度を明らかにすることによって、より良い放流方法の確立に貢献することを目指しています。
実用化イメージ

海洋や河川・湖沼の生態系の現況調査においては、種数や個体数だけではなく遺伝的多様性についてもモニタリングしておくことの重要性が認識されつつあります。主に分析手法や解析方法についての学術指導や共同研究を行う準備があります。

研究者

大学院農学研究科 附属複合生態フィールド教育研究センター 複合水域生産システム部(沿岸生物生産システム学分野)

池田 実  

Minoru Ikeda

生物模倣

生物模倣材料・デバイスの開発

前の画像
次の画像
特徴・独自性
  • 生物の優れた機能を学び、材料・デバイスの創成に取り入れることで、生物を超える機能を示す機能を創出する『生物模倣工学』を目指しています。例えば、ムール貝に学んだ表面処理・接着剤の開発、ウツボカズラに学んだ抗生物付着基板の開発、ヘモグロビンに学んだ高活性燃料電池(水素・酵素・微生物等)の非白金触媒設計、生物の針に学んだ針型バイオセンサーなど多岐にわたります。
実用化イメージ

電気化学、高分子化学を基盤に金属空気電池・燃料電池・表面処理・接着・バイオセンサー等を含むエネルギー・バイオ・電気電子領域に関する技術・知見を提供します。

研究者

高等研究機構学際科学フロンティア研究所 新領域創成研究部学際基盤研究分野 デバイス・テクノロジー研究領域

阿部 博弥  

Hiroya Abe

生分解性プラスチック

麹菌を用いた生分解性プラスチックの分解リサイクル

前の画像
次の画像
特徴・独自性
  • カビの一種で醸造・醗酵に用いられる麹菌Aspergillus oryzaeの固体表面への生育能と、大規模な麹菌工業培養設備(100万トン/年)に着目し、麹菌による生分解性プラスチック(生プラ)の高速・高効率分解と、原料モノマー回収が可能なリサイクル技術の開発を行っている。我々は、麹菌が生プラ固体表面に生育する際に界面活性蛋白質群を大量分泌し、界面蛋白質群が固体表面に吸着した後に生プラ分解酵素を特異的に吸着し固体表面に分解酵素を濃縮することで分解を促進する新規分解促進機構を見出した。また麹菌の産生する界面活性蛋白質は、免疫応答しないことから、医療用ナノ粒子の被覆材として利用可能である。
実用化イメージ

大型発酵設備に適用した工業技術の開発、及び界面活性蛋白質群・酵素等の化成品( 医療用ナノ粒子素材等) への応用開発を展開している。

研究者

大学院農学研究科 農芸化学専攻 生物化学講座(応用微生物学分野)

阿部 敬悦  

Keietsu Abe

成膜

ナノ・マイクロ粒子の静電輸送による微粒子超音速流動加工の高性能化

前の画像
次の画像
特徴・独自性
  • ナノ・マイクロ粒子超音速流動加工は、微粒子を非熱の高速ジェット中に注入し、粒子を基板に高速衝突させることにより基板上に皮膜を形成する省エネルギー型成膜法である。本研究では、微粒子動態を考慮した超音速流動モデルおよび皮膜形成モデルを統合した新たなモデルを提案した。また、最先端歯科医療等への本成膜法の革新的応用を想定し、実機を対象として実時間数値計算と実験の統合解析を行い、本プロセスの高性能化を行った。さらに、静電気力を用いた帯電ナノ粒子の加速制御により、微小空間において衝撃波や複雑干渉を伴う極限環境下でのナノ粒子高速輸送を可能にし、成膜効率が向上することを数値計算により示した。
  • なお、本研究は、2008 年度日本機械学会奨励賞( 研究) を受賞した。本技術を産業界で活用したい企業や団体との共同研究を希望する。
実用化イメージ

研究者

流体科学研究所 流動創成研究部門 電磁機能流動研究分野

高奈 秀匡  

Hidemasa Takana

熱影響・相変態が生じない革新的補修・厚膜コーティング技術

前の画像
次の画像
特徴・独自性
  • コールドスプレー法は、金属粒子を溶融することなく固相状態のまま高速ガス流と共に基材へ衝突させ、成膜する手法です。本法は成膜時の相変態や熱影響の無い皮膜を得ることが特徴であり、これを用いた革新的な補修技術並びにコーティング技術の確立と得られた付着層の信頼性評価を実施しています。また、付着メカニズムおよび得られた皮膜の健全性を評価する目的で、ミクロ/ナノ組織観察および界面強度評価等を実施しています。
実用化イメージ

金属材料のみならず、最近では一部のセラミックスやポリマーの成膜が可能になっております。構造材料としてだけではなく、機能性材料の創製を含めた多方面の企業や団体との連携が可能です。

研究者

大学院工学研究科 附属先端材料強度科学研究センター エネルギー・環境材料強度信頼性科学研究部門(表面・界面制御強度信頼性科学研究分野)

小川 和洋  

Kazuhiro Ogawa

試作コインランドリ −MEMSを中心とする半導体試作共用設備−

前の画像
次の画像
前の動画
次の動画
概要

4 インチ、6インチ、一部8インチのMEMSを中心とした半導体試作開発のための共用設備で、必要な装置を必要なときに時間単位でお使いいただけます。東北大学に蓄積された関連ノウハウが利用可能で、スタッフが試作を最大限支援します。東北大学西澤潤一記念研究センターの2 階スーパークリーンルームのうち、約1,200m2を主に利用しています。装置、料金については、ホームページをご覧ください。

従来技術との比較

経験豊富な10人以上の技術スタッフが支援します。エッチング、成膜などの各プロセスの標準的な加工条件を提供していますので、ご要望に応じた試作がすぐに開始できます。シリコン以外の様々な材料にも対応します。

特徴・独自性
  • MEMS、光学素子、高周波部品などのデバイスのほか、半導体材料開発などに対応します。
  • 試作前、試作途中における、デバイスやプロセスの技術相談にも対応しています。
  • デバイスの実装工程に対応する「プロトタイプラボ」も利用できます。
  • 半導体、計測器、センサなどの歴史を学んでいただける博物館もご覧いただけます。
  • 東北大学半導体テクノロジー共創体の一部として、半導体の研究開発、人材育成を推進しています。
  • 学生、企業技術者向けの半導体人材育成プログラムをオンデマンドで実施しています。
  • 文部科学省マテリアル先端リサーチインフラ(ARIM)事業のメンバーとして、設備とデータの共用に取り組んでいます。
実用化イメージ

2010年の開始以降310社以上の企業が利用しています。MEMS等のデバイスメーカーはもちろん、材料や機械部品、装置メーカーからも利用があります。これまでに約10件の実用化支援事例があります。

研究者

マイクロシステム融合研究開発センター

戸津 健太郎  

Kentaro Totsu

精密計測

精密ものづくり計測に関する研究

前の画像
次の画像
特徴・独自性
  • 精密加工品の形状及び精密機械の運動を必要な精度で計測するという精密ものづくり計測の研究に取り組んでいる。独自の計測原理に基づいて、グレーティングなどの微細格子と波動光学系を組み合わせることによって、超精密ものづくり計測の基本道具となる高精度かつコンパクトな多軸変位、角度センサを実現させている。各種超精密及びマイクロ加工品の形状を高速高精度に測定する実用的なシステムの開発も行っている。
実用化イメージ

多軸変位、角度センサは半導体及び電子部品製造・検査装置、超精密加工機、超精密測定機の運動計測に活用され、また、形状測定システムは超精密加工分野で利用されることを期待し、産業界との共同研究を希望する。

研究者

大学院工学研究科 ファインメカニクス専攻 ナノメカニクス講座(精密ナノ計測学分野)

高 偉  

I Ko

生命化学

癌細胞選択的核酸医薬の創製

前の画像
次の画像
特徴・独自性
  • 抗体医薬に次ぐ分子標的医薬として注目されている核酸医薬であるが、効果的な薬効発現と表裏一体的課題であるオフターゲット効果と呼ばれる副作用の低減がその実用化に向けた重要な解決すべき問題点として指摘されている。我々は従来の方法論とは全く異なる、標的がん細胞内でのみ薬効を発現し、正常細胞内では副作用を発現しない“がん細胞選択的核酸医薬”という新しい研究戦略を提案し、その実現に向け研究を推進している。具体的には増幅期のがん細胞に特徴的な低血流に基づく細胞内低酸素状態、ハイポキシアに注目し、ハイポキシアにより誘起される細胞内pH低下をトリガーとした選択的薬効発現を実現する人工核酸創製に取り組み、核酸塩基の配向変化に基づく標的RNA認識のOn-Off スイッチングを実現した。現在東京医科歯科大学横田隆徳グループとの共同研究により、動物レベルの実証実験に取り組み、良好な初期的データを得ている。標的細胞選択的薬効発現という研究戦略は世界的にも類がなく、高い独自性を有しており、世界的に高く評価されている。
実用化イメージ

上記、がん細胞選択的核酸医薬創製の研究戦略は、幅広いハイポキシア状態疾患への適用が可能で、現在脳梗塞・心筋梗塞への展開も検討しており、次世代分子標的薬剤としての高い可能性を有していると評価されており、産学連携により早期実証実験に繋げていきたい。

研究者

多元物質科学研究所 有機・生命科学研究部門 生命機能制御物質化学研究分野

和田 健彦  

Takehiko Wada

生理信号

実験動物における脳波、心電図、自律神経信号などの生理学的計測

概要

実験動物を用いた基礎生理学の研究において、脳波、心電図、自律神経信号などを同時に計測することで、全身の動的連関を理解することに貢献する。これらの信号は、ヒトでも共通するものが多いため、有用な生理マーカーとしての指標の1つになると期待される。

従来技術との比較

これまでの生理計測では、脳のみ、心臓のみ、など単一の臓器を扱ったものであったが、本技術では、すべての信号を同時に計測できる点が強みである。

特徴・独自性
  • 中枢末梢連関を介した生体応答が、いつ、どこで、どのように生じるか、より直接的に解析し、定量的に評価できる
  • 他の分子生物学や生化学実験との融合が自由に行える
  • 3Dプリンターなど工学的な利点も活かして、標的領域を自由に選択できる
実用化イメージ

生理信号は、動物とヒトでも共通するものが多いため、臨床診断やこころの読み取りなどを目指した指標の選定、デバイス開発への貢献が期待される。

研究者

大学院薬学研究科 生命薬科学専攻 生命解析学講座(薬理学分野)

佐々木 拓哉  

Takuya Sasaki

赤外レーザ

光を利用した低侵襲治療・診断システムの開発

前の画像
次の画像
特徴・独自性
  • 細く柔軟な光ファイバを内視鏡に挿入して患部にレーザ光を照射する低侵襲治療や、内視鏡を用いて光学的な診断を行うための装置や技術についての研究を行っています。また、これらの治療・診断に用いるための光ファイバとして、通常のガラス光ファイバの他に、強力なレーザ光や幅広い波長の光の伝送が可能な、中空光ファイバと呼ばれる特殊な光ファイバを用いた治療・診断システムの研究開発も行っています。
実用化イメージ

医療機器メーカーをはじめ、本分野への新規参入を検討している電子機器、通信装置、および計測機器メーカーなどが連携先として考えられます。

研究者

大学院医工学研究科 医工学専攻 医療機器創生医工学講座(医用光工学分野)

松浦 祐司  

Yuji Matsuura

析出

ナノスケールの構造と組成不均一性を利用した鉄鋼材料の組織制御

概要

安全性を確保しつつ、自動車の燃費改善または構造物の小型化を実現するため、最も多く使われている鉄鋼材料の高強度化が求められる。これまで合金組成や熱処理プロセス条件を変えることで材料全体の平均的な組織制御が行われてきたが、ナノスケールの組織制御が未成熟である。本研究では、これまでの実験調査で困難であったナノスケールの構造・組成不均一性の生成挙動を調査し、高強度鋼組織制御の指針構築に取り組んだ。

従来技術との比較

従来では鉄鋼材料の組織制御は経験的な条件に基づくことが多いが、本研究では熱力学・速度論・結晶学などの知識に基づき鉄鋼材料におけるナノスケールの組成・構造不均一性の挙動を解明した。

特徴・独自性
  • 様々な先端技術を組み合わせた多面的解析手法で実験調査を行い、ナノスケールの構造・組成不均一性の生成挙動を調査した。
  • 実験結果をもとに、熱力学・速度論・結晶学などの観点で解析を行うことにより、その不均一性におよぼす諸因子の影響を解明した。
  • 実験解析に留まらず、熱力学データを活用してその挙動の再現、さらに予測ができるような理論計算も同時に実施した。
実用化イメージ

鉄鋼材料の高強度化に基づき、自動車をはじめとした輸送機器の軽量化または構造物の小型化が可能となり、素材製造や輸送分野のCO2削減の観点でカーボンニュートラルの実現への貢献が期待される。

研究者

金属材料研究所 材料設計研究部 金属組織制御学研究部門

張 咏杰  

Yongjie Zhang

脊髄損傷

ヒト間葉系細胞からのシュワン細胞誘導と脊髄損傷、脱髄性疾患への応用

前の画像
次の画像
特徴・独自性
  • 骨髄や臍帯由来の細胞は自己および他家移植ですでに臨床応用されており、バンクが設立されている、容易に培養可能である、腫瘍形成が無く安全性が担保されているなどの利点がある。これらの組織から分化能力の高い間葉系幹細胞を得て、神経再生を促し機能の回復をもたらすことのできるシュワン細胞を極めて高い誘導効率で作製する技術を開発した。骨髄あるいは臍帯から数週間で1000 万個ほどの間葉系幹細胞が樹立可能である。特定のサイトカインの組み合わせによって97%前後の高い効率で末梢性グリアであるシュワン細胞を短期間で誘導可能である。また末梢神経損傷、脊髄損傷において有効性が確認されている(Eur, J. Neurosci 2001; J.Neurosurg, 2004, J. Neuropathol.Exp. Neurol, 2005, BiochemBiophys Res Commun, 2007;Tissue Eng., 2011)。この方法は霊長類を用いた1年にわたる前臨床試験で安全性と有効性が確認されている(Exp. Neurol., 2010)。
実用化イメージ

誘導されたシュワン細胞は傷害を受けた末梢・中枢神経組織に移植すると切断されたり損傷を受けた神経線維の再伸長を促すだけでなく、髄鞘(ミエリン)を再形成し跳躍伝導の回復をもたらすことを確認している。従って事故や怪我による神経断裂などの損傷だけでなく、神経変性疾患や脱髄性疾患においても有効性があると期待できる。この技術を医療や産業で活用したい企業や団体との共同研究を希望する。

研究者

大学院医学系研究科 医科学専攻 細胞生物学講座(細胞組織学分野)

出沢 真理  

Mari Dezawa

積層造形

形状制約のない力学的異方性材料の簡易な弾性定数計測手法の開発

前の画像
次の画像
特徴・独自性
  • 本弾性定数計測手法は、任意の弾性定数を入力値に用いて共鳴振動解析を行い、振動実験から得られた共鳴振動数と各振動様式が解析結果と一致する入力弾性定数を逆解析的に求める手法です。材料種、材料形態および計測環境の制約を伴わない計測手法の構築を目指しており、金属材料・セラミックス材料・高分子材料・複合材料、顕微鏡サイズ材料・薄膜材料・異種接合材料および高温環境下なども研究対象としています。
実用化イメージ

本研究を発展させるためには、企業の課題と我々の課題との間のギャップを埋める必要があり、知識の相互補完なしでは目的を達成することができない研究開発テーマです。是非、抱えている課題や困難をお教えください。

研究者

大学院工学研究科 航空宇宙工学専攻 航空システム講座(材料・構造スマートシステム学分野)

山本 剛  

Go Yamamoto

セキュリティ

ブロックチェーンを活用した安全なクラウド・ストレージ技術および個人データ取引のための実用的スマートコントラクト技術の開発

前の画像
次の画像
特徴・独自性
  • 不特定多数のユーザ端末が供出する空きストレージとブロックチェーンを活用して、高度な安全性を実現するP2P型ストレージの構築技術を開発しています。構築ストレージは、中央管理サーバの問題に起因する保存データの大規模情報漏洩リスクも回避可能です。また、暗号通貨を報酬と利用料に使用し、全ユーザの公平なストレージ利用も実現します。さらに、実用的なデータ商取引を可能にするスマートコントラクト技術も開発しています。
実用化イメージ

ブロックチェーン技術を活用したスマートコントラクトやフィンテックなどのBitcoin2.0 型アプリケーション、モノインターネット(IoT)、医療情報データベース関連などの開発を行う企業との共同研究を希望します。

研究者

データ駆動科学・AI教育研究センター データ基盤・セキュリティ教育研究部門

酒井 正夫  

Masao Sakai

セタン価

温度勾配型マイクロフローリアクタによる着火・燃焼特性の測定・評価

前の画像
次の画像
特徴・独自性
  • 多様な燃料の着火・燃焼特性を客観評価する新原理の試験法を開発・実用化した。流れ方向に温度が徐々に上昇するよう外部から温度分布制御した微小流路を用いる。燃料が温度上昇と共に低温(600K程度)から酸化剤と反応開始、反応完了(〜1300K)までの過程(通常は高速の過渡現象「着火現象」)を、温度域別に分離した定常な複数反応帯(火炎クロマトグラフィ)として安定化することに成功した。
実用化イメージ

オクタン価やセタン価推定、天然ガス成分別の反応特性解明を既達成。簡便な標準的燃焼化学反応の試験装置として、各種燃焼器開発への適用、不明燃料の着火特性解明にも応用可能である。

研究者

流体科学研究所 附属統合流動科学国際研究教育センター エネルギー動態研究分野

丸田 薫  

Kaoru Maruta

設計法

接合

高温超伝導テープおよびケーブルの着脱可能な接合法の研究

前の画像
次の画像
特徴・独自性
  • 当研究室では高温超伝導テープおよび導体の着脱可能な接合法の研究を行っている。接合方法としては機械的バットジョイント、および機械的ラップジョイント(図1)を採用している。これら機械的接合法では、接合部に与える圧縮力を解除することで、着脱が可能となる。高温超伝導体は比較的高温(液体窒素温度域)で使用することで、比熱を大きくでき、ある程度の抵抗発熱を許容できる。局所的な高熱流束によるクエンチ防止には、金属多孔質体を用いた極低温冷媒の熱伝達促進技術(図2)を用いる。
  • 本研究はこれまで想定されてこなかった高性能で短尺の高温超伝導線を利用した組立・分解・補修が可能な各種超伝導機器の開発可能性を新たに示すものであると考えている。すなわち、アプリケーション開発側から材料開発へのアプローチを可能とし、高温超伝導体産業の活性化を促せる研究であり、この技術を産業界で活用したい企業や団体との共同研究を希望する。
実用化イメージ

研究者

大学院工学研究科 量子エネルギー工学専攻 エネルギー物理工学講座(核融合・電磁工学分野)

橋爪 秀利  

Hidetoshi Hashizume

原子拡散接合法(新しい室温接合技術)とその応用

前の画像
次の画像
特徴・独自性
  • 原子拡散接合法(Atomic Diffusion Bonding, ADB)は、同種・異種のウエハ等を室温で接合する、我々が提案した新しい技術です。標準的なADBは、超高真空中で薄い金属膜を使って接合する技術ですが、最近、酸化膜や窒化膜を使ったADB開発にも成功し、接合界面の機能を更に向上させました。また、Au膜等を用いた大気中接合は、利便性が高く、優れた熱伝導性等を実現できます。
実用化イメージ

新しい電子デバイス、光学デバイス、パワーデバイス、MEMS、ポリマー等の有機系デバイスの形成や、精密機器部品等への展開が期待され、一部は実際のデバイス形成技術として既に利用されています。

研究者

高等研究機構学際科学フロンティア研究所 先端学際基幹研究部 情報・システム研究領域

島津 武仁  

Takehito Shimatsu

切断

金属極細線のジュール熱溶接と機能の創出

前の画像
次の画像
特徴・独自性
  • 金属マイクロ・ナノ材料が持つ優れた物理的諸特性を有効に活用して新しい機能を創出するために、電流により発生するジュール熱を利用した極微細材料の溶接、切断手法を開発しています(図1)。2 本の極細線の先端同士を接触させた状態である範囲内の一定直流電流を付与することで、細線接触部を自発的に溶融、凝固させ、同部を溶接できることを見出しました。また当該手法を駆使して極微細材料のマニピュレーションも可能です。
実用化イメージ

素材としての金属極細線から新たな機能を創出できます(図2)。また極微細材料の物理的諸特性を評価する独自の試験技術も開発しており(図3)、これら技術を活用した産学連携が可能です。

研究者

大学院工学研究科 ファインメカニクス専攻 ナノメカニクス講座(材料システム評価学分野)

燈明 泰成  

TOHMYOH Hironori

節約

環境にやさしい都市構造と環境配慮行動の促進に関する研究

前の画像
次の画像
特徴・独自性
  • 低環境負荷社会への移行には、技術革新以上に私たちの意識改革が必要です。そのためには、リサイクル等も含め、QOL(Quality of Life)を低下させない範囲で資源消費の最小化を図ることが重要になります。本研究では、主に環境負荷の小さなライフスタイルやコンパクトシティを実現させる方策について、心理学をベースに検討しています。つまり、心理学を使い、人の行動をより環境にやさしいものに変える方策を検討しています。
実用化イメージ

広い意味でのまちづくりにおいて、人の心理や行動を計測し、それを変える方法を提案するものです。そのため、マーケッティング分野や都市計画分野との連携が可能です。

研究者

大学院国際文化研究科 国際文化研究専攻 国際環境資源政策論講座

青木 俊明  

Toshiaki Aoki