東北大学 研究シーズ集

LANGUAGE

登録されているキーワード 2447ワード(研究テーマ411件)

コンピュータアーキテクチャ

スーパーコンピュータシステム設計とその応用に関する研究

前の画像
次の画像
特徴・独自性

次世代超高性能スーパーコンピュータシステムを実現するハードウェアおよびシステムソフトウェアの要素技術の確立と、スーパーコンピュータシステムの卓越した情報処理能力を最大限に引き出せる高性能シミュレーション技術について研究を進めている。具体的には、3次元デバイスや不揮発メモリなど先進デバイス技術を活用した低消費電力、高メモリバンド幅スーパーコンピュータシステム設計とその利用技術の開発に取り組んでいる。

産学連携の可能性(想定される用途・業界)

スーパーコンピュータ設計とその応用に関する産学連携研究を進めているが、ものづくりを支えるスーパーコンピュータ向けシミュレーションコードの高度化、高速化を必要とする企業との産学共同研究も可能である。

情報科学研究科
小林 広明 教授 工学博士
KOBAYASHI, Hiroaki Professor

IoT

遠隔・非接触に生体情報を抽出する「魔法の鏡」プロジェクト

前の画像
次の画像
特徴・独自性

少子超高齢化による医療費増大や医療格差拡大を抑止するための鍵は、情報通信技術(ICT)の利活用です。本研究室では、ICT を用いて「いつでもどこでも健康をモニタリング」するためのシステム「魔法の鏡」を開発しています。このシステムでは、遠隔・非接触で得られる映像信号に基づき、鏡の前に立つだけで血圧反射系に関係する自律神経機能を手軽にチェックすることができます。現在、実証実験を進めており、血圧変動推定や運動の効果の判定など、その有効性が確かめられつつあります。

産学連携の可能性(想定される用途・業界)

家庭の鏡以外にも、スマートフォン・自動車・感情認識ロボット・監視カメラ・スポーツ中継・広告評価など、幅広い応用可能性があります。この技術を応用する医療機関・企業を募集します。

サイバーサイエンスセンター 先端情報技術研究部
吉澤 誠 教授 工学博士
YOSHIZAWA, Makoto Professor

ICT活用

学校現場における教員および児童生徒によるICT活用に関する実証研究

前の画像
次の画像
特徴・独自性

我が国の初等・中等教育の学校現場におけるICT活用について研究している。学校現場、とりわけ公立学校の義務教育におけるテクノロジー導入を考える際には、児童生徒の学力向上というミッションからのブレがないことや、多忙な教員にとって現実的かつ持続可能であること、低廉なコスト、さらには公教育における平等性のバランスなどの「宿命」が存在する。これらを勘案した上でのICT活用について、より実証的な研究を目指していることが特徴である。
これまで、(1)教員に広く用いられやすいICT は実物投影機であり、その活用については各教員による授業の個性と関係していることの解明、(2)デジタル教科書等を比較的シンプルな工数で開発する技術、(3)小学生向けのキーボード入力学習e ラーニングの開発などに取り組んできた。

産学連携の可能性(想定される用途・業界)

我が国の初等・中等教育の学校現場を対象とした教員向け授業支援ツールや児童生徒向けデジタル教材等の開発に関するコンサルティング等が考えられる。

情報科学研究科 人間社会情報科学専攻
堀田 龍也 教授
HORITA, Tatsuya Professor

iPS細胞

魚類iPS細胞開発に向けた基盤研究

前の画像
次の画像
特徴・独自性

細胞の多能性をGFP の蛍光でモニターできるトランスジェニック(Tg)メダカとゼブラフィッシュを開発した。開発したTg を使うと、GFPの蛍光発光で胚細胞の多能性や再生組織に出現する多能性細胞をモニターできるので、培養細胞のiPS化を蛍光で判定することも可能である。また哺乳類のiPS 細胞作成用に市販されているMiniCircle DNA が魚類でも多能性付与効果のあることを明らかにした。

産学連携の可能性(想定される用途・業界)

魚類iPS 細胞の開発。現在、モデル生物であるメダカとゼブラフィッシュを用いて基盤研究を進めているが、養殖魚の選抜系統を細胞の状態で凍結保存する技術開発に結びつけたい。

農学研究科
鈴木 徹 教授 農学博士
SUZUKI, Tohru Professor

iPS細胞の腫瘍化を抑制することが可能な分化誘導方法

特徴・独自性

本発明は、スタチン系薬剤を用いることにより、iPS 細胞の移植に際して問題となる腫瘍化を抑制する技術である。スタチン系薬剤は、すでにコレステロール低下薬として広く普及している。iPS細胞の移植先における腫瘍化は、iPS細胞の再生医療応用への最大の課題のひとつであるが、細胞ソーティングなどの煩雑な手技を経ずに、スタチンを用いるだけでこの腫瘍化の課題が解決することができれば、iPS 細胞を用いた骨再生医療の実現へ大きく前進することが期待される。

産学連携の可能性(想定される用途・業界)

本発明は、医科・歯科領域で重要な骨組織再生技術をiPS細胞を用いて可能にすることが想定される。

歯学研究科 分子・再生歯科補綴学分野
江草 宏 教授 博士(歯学)
EGUSA, Hiroshi Professor

口腔粘膜由来細胞を利用したiPS細胞の効率的な製造方法

特徴・独自性

本発明は、患者への負担が少なく、しかも高い樹立効率でiPS 細胞を作製する技術を提供することを目的とする。より詳細には、本発明は、口腔粘膜(歯肉)由来の体細胞を利用することによって、誘導多能性幹細胞を高い樹立効率で製造する方法に関する。更に、本発明は、当該製造方法によって作製された誘導多能性幹細胞に関する。
また、歯肉由来の細胞を用いることで、iPS 細胞の作製の際にウイルスを用いずに外来遺伝子挿入のないヒトiPS 細胞を、効率的に樹立することが可能である。さらに、ヒト以外の異種成分を含まない培養系を確立するために、iPS 細胞源である同一患者由来の歯肉由来細胞が自己フィーダー細胞として好適であることも明らかにしており、本発明技術を基盤とした移植に安全なiPS 細胞技術が確立されつつある。

産学連携の可能性(想定される用途・業界)

本発明技術を用いて個々の患者の歯肉から効率的にiPS細胞を作製することによって、医科・歯科領域で期待されているオーダーメイドの再生医療が、より容易かつ効率的となることが想定される。

歯学研究科 分子・再生歯科補綴学分野
江草 宏 教授 博士(歯学)
EGUSA, Hiroshi Professor

青色光

青色光を用いた殺虫技術の開発

前の画像
次の画像
特徴・独自性

可視光には複雑な動物に対する致死効果はないとこれまで考えられていたが、その常識を覆し、青色光に殺虫効果があることを明らかにした。LED などの照明装置を用いて、青色光を害虫の発生場所に照射するだけの殺虫方法であるため、クリーンで安全性の高い全く新しいケミカルフリーな害虫防除技術になることが期待される。可視光に殺虫効果があることを発見したのは世界初であり、他に類似のものが全くない独自の技術である。

産学連携の可能性(想定される用途・業界)

農業、食品産業、畜産業、公衆衛生、一般家庭など様々な分野における害虫防除への利用を想定している。上記用途と関連する業界あるいは照明メーカーとの連携が考えられる。

農学研究科
堀 雅敏 准教授 博士(農学)
HORI, Masatoshi Associate Professor

アクセス制御

多様なアクセス制御方式をもつネットワークローミングシステム

前の画像
次の画像
特徴・独自性

認証基盤に基づく無線LANローミング環境で、ユーザ属性情報を用いて多様なアクセス制御を実現する方式を開発している。802.1x方式による大学間無線LAN ローミングeduroamを運用しつつ、認証結果によりアクセス制御方式の改良提案と実証評価を行う。ユーザの所属情報に従いOpenFlow 技術を用いて収容ネットワークを選択したり、予め設定した属性データによりアクセス権限を制御したりできる技術を含んでいる。

産学連携の可能性(想定される用途・業界)

ネットワークアクセス制御と認証応用の結合は、利用者ごとにネットワーク利用のサービスや優先度を変更できる耐災害ネットワーク構築技術に応用できる。無線LAN アクセスサービスの多様化を可能とする基盤技術として利用できる。

サイバーサイエンスセンター
曽根 秀昭 教授 博士(工学)
SONE, Hideaki Professor

アクチュエータ

MEMS・マイクロマシンと微細加工技術に関する研究

前の画像
次の画像
特徴・独自性

情報機器の入出力や自動車の安全のために用いられるMEMSと呼ばれるマイクロデバイス/システムの研究を行っています。集積化センサ、圧電デバイス、高周波MEMS、過酷環境センサ、マイクロエネルギーデバイス、ウェハレベルパッケージなどの研究に実績があります。リソグラフィ、エッチング、成膜、ウェハ接合、実装、各種評価のための装置を多数揃え、研究者自身が操作して研究できる開かれた実験環境を提供しています。

産学連携の可能性(想定される用途・業界)

これまでに多くの企業から研究員を受け入れ、産学共同研究を行うとともに、スポット的に装置を利用頂くような支援も積極的に行っています。豊富な資料・データに基づき、随時、技術相談を受け付けています。

工学研究科 バイオロボティクス専攻
田中 秀治 教授 博士(工学)
TANAKA, Shuji Professor

高性能な小型センサ・アクチュエータの設計、製造とテスト

前の画像
次の画像
特徴・独自性

金属ガラスやナノ構造などの新しい種類の材料をマイクロテクノロジと統合して、音響センサやアクチュエータ、熱電発電およびウェハレベルパッケージ等の新規デバイスの研究/ 開発を行っている。これらはマイクロ・ナノ・エレクトロ・メカニカル・システム(MEMS / NEMS)と呼ばれ、今日のスマートフォンや自動運転、ドローン等に欠かせない技術となっている。学内外のパートナーと連携して基礎的な材料/プロセス技術からパッケージングや信頼性等、産業に移転可能な実用化技術までを開発している。

産学連携の可能性(想定される用途・業界)

マイクロシステム分野で幅広い産学連携が可能である。信頼性、歩留り等、重要な項目で産業へ技術移転が可能なレベルにプロセス、デバイス、システムの開発を最適化ができる。フラウンホーファー研究機構と協力実績があり、産学連携において幅広いプロジェクト要件への対応や複雑なシステムソリューションを提供することができる。

材料科学高等研究所
ヨーク フロメル 准教授 工学博士
FROEMEL, Joerg Associate Professor

アジア

アジアにおける廃棄物の適正処理と都市鉱山政策に関する研究-国際資源循環と越境環境問題を中心に-

前の画像
次の画像
特徴・独自性

近年、アジア諸国における廃棄物処理及びリサイクルのマーケットが急速に拡大しており、いわゆる「静脈産業」、「都市鉱山」分野の潜在力が注目されている。本研究の目的は使用済み自動車、使用済み小型家電、容器包装、生活系廃棄物などを対象として、各国における廃棄物処理、リユースネットワーク、リサイクルプロセスを比較分析した上、それぞれの政策評価を行い、国際資源循環の可能性と越境環境問題の解決策を探ることである。特に各国の社会・経済・環境システムの特徴と課題を考慮し、有価物のみならず、資源化効率の低い再生資源、生活系廃棄物などの総合的な廃棄物処理と再資源化政策を提案する。

産学連携の可能性(想定される用途・業界)

アジア各国の動脈産業及び静脈産業における国際資源循環の連携について実践的試みを継続して行っており、人、情報、モノのネットワーク構築のための、基礎調査(FeasibilityStudy) 、技術指導、人材育成、環境管理システム及び新しいビジネスモデル構築などの支援ができる。

国際文化研究科 国際環境資源政策論講座
劉 庭秀 教授 博士(都市・地域計画)
YU, Jeongsoo Professor

圧電結晶

新規機能性結晶、シンチレータ、圧電単結晶の開発とデバイス化

前の画像
次の画像
特徴・独自性

放射線や光、熱、圧力等の外部からのエネルギーと結晶との相互作用に興味を持ち、㈰化学と物理の両面からの材料設計、㈪合成プロセスの開発、㈫相互作用の評価と理解、の3 つの切り口から先駆的な機能性結晶の研究を進めています。研究室内で異分野融合を行っており、要素技術の上流から下流までを垂直統合する体制で取り組んでいます。優れた特性を持つ結晶に関しては、そのデバイス化、実機搭載にも主体的に関わる点も特徴です。

産学連携の可能性(想定される用途・業界)

シンチレータは、核医学、セキュリティ、核融合、資源探査、宇宙物理等、に用いる放射線検出器に応用されます。高発光量、高速応答、長波長発光、高エネルギー分解能、高温域での安定性など、ユーザーのニーズに合わせた材料設計が可能です。また、ランガサイト型圧電結晶は室温近傍の温度特性と低インピーダンスである特性を利用して、振動子、発振器、音叉等への応用も考えられております。また、高温域での特性に注目し、特に、自動車の燃焼圧センサー等への応用も検討されております。

金属材料研究所 先端結晶工学研究部
吉川 彰 教授
YOSHIKAWA, Akira Professor

圧電材料

機能性結晶材料と結晶成長技術の開発

前の画像
次の画像
特徴・独自性

融液からの結晶成長技術を利用した新規の機能性結晶材料を開発することを特徴とした研究を行っている。具体的には、シンチレータ材料・光学材料・圧電材料・熱電材料・金属材料を対象物質として研究を行っている。さらに、独自の結晶成長技術を用いた新規機能性材料のバルク単結晶化や難加工性金属合金の線材化技術などを開発している。

産学連携の可能性(想定される用途・業界)

シンチレータや圧電素子等の単結晶が利用されている検出器や光デバイス、電子機器向けの新規材料探索や材料の高品質化に貢献できる。さらに、融液の直接線材化技術を用いた様々な難加工性合金の細線化が可能である。

未来科学技術共同研究センター
横田 有為 准教授
YOKOTA, Yuui Associate Professor

構造制御による環境発電材料の高性能化と応用展開

前の画像
次の画像
特徴・独自性

IoT 社会の実現に向けて、充電を必要としない小型センサの開発は不可欠である。当研究室では、独自装置を用いた材料創製技術、理論に基づいた数値解析技術を駆使し、材料の複合化によって、身の回りの未利用エネルギー(振動、超音波、光エネルギーなど) を電気エネルギーとして回収可能な環境発電材料の創製とさらなる高性能化を得意としている。

産学連携の可能性(想定される用途・業界)

環境発電特性および関連特性の付与による、既存の機械やデバイスのさらなる高性能化、新機能追加から生じる付加価値向上を目指している企業等との共同研究を希望する。

工学研究科
成田 史生 教授 博士( 工学)
NARITA, Fumio Professor

圧電センサー

新規機能性結晶、シンチレータ、圧電単結晶の開発とデバイス化

前の画像
次の画像
特徴・独自性

放射線や光、熱、圧力等の外部からのエネルギーと結晶との相互作用に興味を持ち、㈰化学と物理の両面からの材料設計、㈪合成プロセスの開発、㈫相互作用の評価と理解、の3 つの切り口から先駆的な機能性結晶の研究を進めています。研究室内で異分野融合を行っており、要素技術の上流から下流までを垂直統合する体制で取り組んでいます。優れた特性を持つ結晶に関しては、そのデバイス化、実機搭載にも主体的に関わる点も特徴です。

産学連携の可能性(想定される用途・業界)

シンチレータは、核医学、セキュリティ、核融合、資源探査、宇宙物理等、に用いる放射線検出器に応用されます。高発光量、高速応答、長波長発光、高エネルギー分解能、高温域での安定性など、ユーザーのニーズに合わせた材料設計が可能です。また、ランガサイト型圧電結晶は室温近傍の温度特性と低インピーダンスである特性を利用して、振動子、発振器、音叉等への応用も考えられております。また、高温域での特性に注目し、特に、自動車の燃焼圧センサー等への応用も検討されております。

金属材料研究所 先端結晶工学研究部
吉川 彰 教授
YOSHIKAWA, Akira Professor

圧電デバイス

MEMS・マイクロマシンと微細加工技術に関する研究

前の画像
次の画像
特徴・独自性

情報機器の入出力や自動車の安全のために用いられるMEMSと呼ばれるマイクロデバイス/システムの研究を行っています。集積化センサ、圧電デバイス、高周波MEMS、過酷環境センサ、マイクロエネルギーデバイス、ウェハレベルパッケージなどの研究に実績があります。リソグラフィ、エッチング、成膜、ウェハ接合、実装、各種評価のための装置を多数揃え、研究者自身が操作して研究できる開かれた実験環境を提供しています。

産学連携の可能性(想定される用途・業界)

これまでに多くの企業から研究員を受け入れ、産学共同研究を行うとともに、スポット的に装置を利用頂くような支援も積極的に行っています。豊富な資料・データに基づき、随時、技術相談を受け付けています。

工学研究科 バイオロボティクス専攻
田中 秀治 教授 博士(工学)
TANAKA, Shuji Professor

圧力流速同時計測

熱音響現象の理解と応用

前の画像
次の画像
特徴・独自性

温度境界層程度の狭い流路を伝搬する気柱音波は、音響パワーの自発的な生成や増幅、また低温生成などの多様な熱的現象を引き起こします。これら熱音響現象を実験的に理解し、固体ピストンなどの可動部品のない熱機関へ応用することに取り組んでいます。

産学連携の可能性(想定される用途・業界)

音波エンジンは外燃機関ですから、産業排熱や太陽光エネルギーを熱源として利用可能です。
音波クーラーはフロンを使用しない冷却技術です。

工学研究科
琵琶 哲志 教授 博士(工学)
BIWA, Tetsushi Professor

アドホック

圏外でも通信可能な“スマホdeリレー”

前の画像
次の画像
特徴・独自性

爆発的に普及したスマートフォンですが、そのWiFiを活用すれば、携帯電話がつながらなくても、隣の人はもちろん、周囲のスマートフォンにデータをリレーしてもらうことで遠くの人とも情報を交換することが可能になります。現在研究開発を進めている省電力技術やセキュリティ技術が確立すれば、電池残量を気にする必要もなく、他人にデータを見られる心配もなく、通信することが可能になります。

産学連携の可能性(想定される用途・業界)

災害等の緊急時の情報発信、商店街等での広告・クーポン配布、イベント会場等での少人数グループ内情報交換、団体旅行・登山等でのトランシーバ的な利用、新興国等での通信サービスなどへの応用が期待できます。

情報科学研究科 応用情報科学専攻
加藤 寧 教授 工学博士
KATO, Nei Professor

アナモックス

メタン発酵とアナモックスプロセスの応用

前の画像
次の画像
特徴・独自性

嫌気性微生物系(メタン生成古細菌とアナモックス細菌)と機能性材料(分離膜、担体)の融合利用により、有機性排水・廃棄物の処理に適した省エネルギー・低炭素型かつエネルギー生産ができる高効率的処理技術を確立していきたいです。図1に示すように、嫌気性膜分離反応槽と担体添加型一槽式アナモックス(ANAMMOX)ユニットを組み合わせることによって新しい排水・廃棄物処理システムを構築し、図2のような効果の実現を目指しています。

産学連携の可能性(想定される用途・業界)

下水、産業排水、ごみ埋立処理処分場浸出水などの有機性排水処理および廃棄物系バイオマスのエネルギー資源化を目指して、環境プラントメーカーまたはバイオガス発電事業者との連携を図っていきたいです。

工学研究科 / レアメタル・グリーンイノベーション研究開発センター
李 玉友 教授 工学博士
LI, Yu-You (RI, Gyokuyu) Professor

アナログ集積回路

ブレインモルフィックコンピューティングハードウェア

前の画像
次の画像
特徴・独自性

脳が特異的に持つ機能(例えば、意識/無意識過程、自己、選択的注意など)を、これまでの情報科学的な方法とは異なり、デバイスの物理的な特性・ダイナミクスを用いて直接的に構築することにより、小型高効率高性能な脳型ハードウェアの開発を行う。具体例としては、カオスニューラルネットワークリザバー、高次元複雑ダイナミクスによる最適化、スピン軌道トルクデバイスによるニューラルネットワーク等である。

産学連携の可能性(想定される用途・業界)

この脳型ハードウェアは、ユーザ個人の情報の学習が必須なエッジ端末に有効で、例えば、補聴器や入れ歯に内蔵して心電や脳波、唾液成分などの学習により、異常検知を行う見守りデバイスなどへの応用が期待できる。

電気通信研究所
堀尾 喜彦 教授 工学博士
HORIO, Yoshihiko Professor