Electrical Spin Generation and Manipulation in Semiconductors


update:2020/06/16
NEXT
PREV
Features and Uniqueness
  • Since spin orbit interactions caused by the structural inversion asymmetry and the bulk inversion asymmetry induce an effective magnetic field in III-Vsemiconductor heterostructures, it is possible to realize the new functional devices based on the electrical control of the spin precession. We study the electrical spin generation by using spatial modulation of spin orbit interaction, which demonstrates Stern-Gerlach spin filter in semiconductors, and research ultra-fast spin dynamics by using time resolved Kerr rotation microscopy. We also investigate a spin MOSFET based on the perpendicular magnetic materials and electric-field induced magnetization control. We can reduce the leak current and the signal delay in the logic circuit. With the non-volatility of the ferromagnetic source and drain electrodes, random access memory is also enabled by using the spin MOSFET structure.
Practical Application

Target application will be low power logic devices and non-volatile memory based on electron spins and also future metal-based spintronic devices.

Keywords

Researchers

Graduate School of Engineering

Makoto Koda, Professor
Doctor of Engineering