登録されている研究者 431人(研究テーマ419件)

ウェアラブル脈波センサのための脈拍間隔ノイズ除去フィルタ

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • ウェアラブル光電式容積脈波計(PPG)センサから得られる脈拍数時系列信号に含まれるノイズの生理学的特性に基づく識別に成功しました。本技術は、生理的な脈拍数変動の特性を利用して、非生理的な変動をノイズとして識別することができます。これによって、従来、ウェアラブルPPG センサでは困難であった活動中を含めた1拍毎の脈拍変動解析が可能になることが期待されます。
実用化イメージ

本技術を用いることで、(1) 特徴的な波形の可視化、(2) 再現性のある指標の算出、(3) 機械学習を応用した時系列データに対する異常検知など、解析技術の向上が期待できます。

研究者

大学院工学研究科

湯田 恵美  

Emi Yuda

機能性結晶材料と結晶成長技術の開発

前の画像
次の画像
特徴・独自性
  • 融液からの結晶成長技術を利用した新規の機能性結晶材料を開発することを特徴とした研究を行っている。具体的には、シンチレータ材料・光学材料・圧電材料・熱電材料・金属材料を対象物質として研究を行っている。さらに、独自の結晶成長技術を用いた新規機能性材料のバルク単結晶化や難加工性金属合金の線材化技術などを開発している。
実用化イメージ

シンチレータや圧電素子等の単結晶が利用されている検出器や光デバイス、電子機器向けの新規材料探索や材料の高品質化に貢献できる。さらに、融液の直接線材化技術を用いた様々な難加工性合金の細線化が可能である。

研究者

金属材料研究所

横田 有為  

Yui Yokota

難処理性高分子廃棄物の化学リサイクル

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • プラスチックやバイオマスの付加価値の高い化学物質への転換を目的に、熱分解および湿式プロセスで種々の高分子廃棄物リサイクルの研究をしています。例えば、PETの脱カルボキシル化により、高収率でベンゼンを得ることに成功しました。また、難熱性プラスチックやPVCの脱ハロゲン化プロセスを開発し、炭化水素だけでなくあらゆる元素の化学原料化を検討しています。プラスチックとバイオマス等との共熱分解プロセスや、湿式脱ハロゲンプロセスにより、基礎化学原料への転換効率を向上させ、またハロゲンの循環プロセスについて研究をしています。また、これらの技術を用いて、金属・プラスチック複合物から金属とプラスチックを効果的にリサイクルする化学プロセスを構築しています。
実用化イメージ

廃棄物のリサイクルプロセスの開発に付随して起こる諸問題を解決するための方法を提供することができます。

研究者

大学院環境科学研究科

吉岡 敏明  

Toshiaki Yoshioka

新規機能性結晶、シンチレータ、圧電単結晶の開発とデバイス化

前の画像
次の画像
特徴・独自性
  • 放射線や光、熱、圧力等の外部からのエネルギーと結晶との相互作用に興味を持ち、㈰化学と物理の両面からの材料設計、㈪合成プロセスの開発、㈫相互作用の評価と理解、の3 つの切り口から先駆的な機能性結晶の研究を進めています。研究室内で異分野融合を行っており、要素技術の上流から下流までを垂直統合する体制で取り組んでいます。優れた特性を持つ結晶に関しては、そのデバイス化、実機搭載にも主体的に関わる点も特徴です。
実用化イメージ

シンチレータは、核医学、セキュリティ、核融合、資源探査、宇宙物理等、に用いる放射線検出器に応用されます。高発光量、高速応答、長波長発光、高エネルギー分解能、高温域での安定性など、ユーザーのニーズに合わせた材料設計が可能です。また、ランガサイト型圧電結晶は室温近傍の温度特性と低インピーダンスである特性を利用して、振動子、発振器、音叉等への応用も考えられております。また、高温域での特性に注目し、特に、自動車の燃焼圧センサー等への応用も検討されております。

研究者

金属材料研究所

吉川 彰  

Akira Yoshikawa

宇宙探査ロボットの研究・開発

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 月や火星などの未知の不整地を移動探査するロボットの技術を研究・開発しています。ロボットの移動機構として不整地走行に適したメカニズムの開発、また砂状の滑りやすい地形での駆動制御の研究を進めています。レーザー測距の技術を用いて移動しながら3次元環境地図を作成し、障害物回避等の自律制御および遠隔操縦支援に役立てる技術を開発しています。JAXA 小惑星探査機「はやぶさ」「はやぶさ2」の開発にも貢献しています。
実用化イメージ

地上での探査ロボット、災害対応ロボットにも応用可能です。

研究者

大学院工学研究科

吉田 和哉  

Kazuya Yoshida

超小型(50kg級)人工衛星の研究・開発

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 大きさ50cm 立方、質量50kg 級の超小型人工衛星を大学の研究室で設計・開発しています。2009年1月に打上げられた東北大1号機衛星『雷神』を皮切りに、この15年間で15機以上の超小型人工衛星(CubeSatを含む)を開発し、軌道上運用を行っております。50kg 級衛星としては、世界最高性能のポインティング制御による高解像度の地上写真画像撮影、および多波長画像撮影技術を確立するなどの成果をあげています。研究室で開発した技術の社会実装として、株式会社ElevationSpace およびシスルナテクノロジーズ株式会社の2社の大学発スタートアップへと展開しています。
実用化イメージ

宇宙開発は国の専門機関が行うものという常識を破り、短期間・低価格で衛星を開発し、リモートセンシング、地球観測、宇宙探査等において新しい応用分野を開拓することに挑戦しています。また、衛星搭載機器の実装技術にも実績をあげており、産学連携の可能性を模索しています。

研究者

大学院工学研究科

吉田 和哉  

Kazuya Yoshida

ウィークビーム走査透過電子顕微鏡による原子力材料中の微細組織の定量解析

概要

格子欠陥定量解析法として極めて高い計測精度を誇るウィークビーム走査透過電子顕微鏡(WB-STEM)法の中で放射化試料・核燃試料の微細組織(転位および照射欠陥集合体など)を定量解析する技術を開発しました。
カートリッジ式の加熱炉の温度計測と電流制御を完全自動化した専用の加熱試料ホルダーとの組み合わせで、高い信頼性の温度履歴と一緒に転位組織の変化を動的にその場計測できます。

従来技術との比較

従来TEM法では逆空間や転位論などの専門知識を必要としましたが、我々のWB-STEM法では膜厚計測や転位ループ特徴抽出など自動解析ソフトウェアを実装しており、簡便かつ高精度な照射欠陥分析ができます。

特徴・独自性
  • WB-STEM法は、その設計当初から原子力材料を取り扱う放射線管理区域内での、実装とオンサイト修理を想定して特殊孔径絞りや回折ディスク選択装置、制御・解析ソフトウェアを開発しています。
  • 欧州炉RPV監視試験片、米国研究炉中性子照射材など世界中の放射化試料の照射欠陥分析を受け入れています。
  • 廃炉事業に鉄含有核燃料模擬デブリの性状分析にも活用されています。
実用化イメージ

現在、透過電子顕微鏡を用いて組織観察を実施している研究組織が新たに特殊改造によってWB-STEM法を導入することをサポートをします。透過電子顕微鏡の使用実績の無い研究者に転位分析の手順を指導します。

研究者

金属材料研究所

吉田 健太  

Kenta Yoshida

医療における意思決定への行動経済学的アプローチ

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 医療場面での意思決定において、患者の意向の尊重という名の下に、選択を完全に患者に任せるようなコミュニケーションが少なからず取られています。しかし、意思決定を難しく感じる患者も多く、医学的な観点からは不合理と思われるような選択をするケースも生じます。本研究は、行動経済学のアプローチを医療場面に応用し、患者のバイアスや感情を考慮したより適切な医療コミュニケーションのあり方を探ることを目的として進めています。
実用化イメージ

当該領域は近年アプリ等の活用も進んでいるため、開発を手がける企業との連携の可能性があります。また、治療選択のみならず検診受診やワクチン接種等の行動も扱っているため、行動変容を目指したい自治体等との連携の可能性もあります。

研究者

大学院教育学研究科

吉田 沙蘭  

Saran Yoshida

高齢社会の経済分析

概要

従来技術との比較

特徴・独自性
  • 少子・高齢社会の問題や男女共同参画、医療や介護などの社会保障の問題などについて、従来の歴史的、制度的観点に重きを置いた分析とは異なり、経済学や市場均衡の理論と統計資料を使って分析し、解決策を政策提言します。
実用化イメージ

下記のような社会貢献、産学連携が想定されます。・少子高齢化に伴う財政、市場の将来予測、医療、福祉の効率的運営や男女共同参画社会の経済学的分析など、行政やシンクタンクとの連携・高齢者向け福祉器具や将来世代向けイノベーション機器の開発。

研究者

大学院経済学研究科

吉田 浩  

Hiroshi Yoshida

民法改正と事例研究(ケーススタディ)

前の画像
次の画像
概要

制定から120年ぶりの大改正と言われた2017年の民法(債権関係)改正以来、成年年齢、相続法、所有者不明土地関係、親族法(特別養子、嫡出推定ほか親子法、共同親権)と立て続けに民法改正が行われ、現在でもさらに担保法制、成年後見、遺言に関して法制審議会の部会における議論が進んでいます。こうした改正について、背景となった学説・理論や判例の動向を踏まえた研究を行っています。

従来技術との比較

単なる改正経緯の追跡や理論研究だけではなく、事例研究(ケーススタディ)の方法によって、改正により従来の条文による解決とどの点がどのように変わるのかを明らかにしています。このため、実際の法律実務において法改正の影響を検討する際に、非常に有用な形で知見を公表できていると考えています。

特徴・独自性
  • 様々な領域について、改正が、従来の学説や判例をどう取り込み、あるいはそれらとどう異なるのかという観点を取り込んで事例研究(ケーススタディ)を行っている点は、特徴的なものと考えています。
実用化イメージ

講演、勉強会、研究会などの形で、民法の事例研究に貢献できると考えています。法律実務家(士業)を対象とした講演(写真参照)の経験もあります。

研究者

大学院法学研究科

吉永 一行  

Kazuyuki Yoshinaga

3段階解析で正確な空間情報を抽出!

前の画像
次の画像
概要

人工衛星等で地表面を観測したデータの解析手法です。データ容量の少ない近赤外バンドを用いて洋上浮遊物があると思われるエリア1を特定し,そのエリア近傍2のパンクロマティックバンド画像を作成し、オブジェクトベース解析によって対象物を抽出します。

従来技術との比較

特徴・独自性
実用化イメージ

研究者

大学院農学研究科

米澤 千夏  

Chinatsu Yonezawa

地表面の状況を高精度に抽出できます

前の画像
次の画像
概要

ドローン等を利用して得られる高さ情報を用いて、植生等の地表面の利用状況を容易に把握することができる地表面合成画像作成方法を提供する。

従来技術との比較

・合成画像は、RGBの3チャンネル画像として得られるため汎用性が高い。
・フリーの画像処理ソフトウェアの利用が可能

特徴・独自性
  • このシーズは、下記の特徴を持ちます。
  • ・RGB 画像と高さ情報を合成します。
  • ・簡便な手順で実行可能です。
  • ・一般的な深層学習のプログラムの使用が可能です。
実用化イメージ

下記のような社会実装が想定されます。
・植生(屋敷林や公園の樹木や植栽)の把握、維持管理
・災害調査(倒木など)
・建物や太陽光パネル等の人工物調査

研究者

大学院農学研究科

米澤 千夏  

Chinatsu Yonezawa

メタン発酵とアナモックスプロセスの応用

前の画像
次の画像
特徴・独自性
  • 嫌気性微生物系(メタン生成古細菌とアナモックス細菌)と機能性材料(分離膜、担体)の融合利用により、有機性排水・廃棄物の処理に適した省エネルギー・低炭素型かつエネルギー生産ができる高効率的処理技術を確立していきたいです。図1に示すように、嫌気性膜分離反応槽と担体添加型一槽式アナモックス(ANAMMOX)ユニットを組み合わせることによって新しい排水・廃棄物処理システムを構築し、図2のような効果の実現を目指しています。
実用化イメージ

下水、産業排水、ごみ埋立処理処分場浸出水などの有機性排水処理および廃棄物系バイオマスのエネルギー資源化を目指して、環境プラントメーカーまたはバイオガス発電事業者との連携を図っていきたいです。

研究者

大学院工学研究科

李 玉友  

Gyokuyu Ri

放射光による原子スケールの構造測定

前の画像
次の画像
概要

主に放射光の回折を用いて、高い精度で構造観測を行います。エピタキシャル薄膜や固液界面など,計測技術が確立していない測定対象を見るのが特徴です。

従来技術との比較

大強度の放射光と,情報科学を併用することで,標準的なX線構造解析の手法が適用できない物質の構造を明らかにします。

特徴・独自性
  • 周期性が完全でない物・表面や界面の構造解析を行う。
  • 有機半導体の表面構造緩和
  • 酸化物の界面構造
  • ある程度平滑な表面(AFMで見える程度,ステップ表面)があれば、その表面近傍の構造を非破壊・非接触で0.01nmの精度で決める事が可能
実用化イメージ

固液界面でのプロセスの進行過程を見るような応用が考えられます。 図1:測定セットアップ,図2:20ms露光でのX線反射率測定による固液界面構造観測例

研究者

大学院理学研究科

若林 裕助  

Yusuke Wakabayashi

癌細胞選択的核酸医薬の創製

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 抗体医薬に次ぐ分子標的医薬として注目されている核酸医薬ですが、効果的な薬効発現と表裏一体的課題であるオフターゲット効果と呼ばれる副作用の低減がその実用化に向けた重要な解決すべき問題点として指摘されています。我々は従来の方法論とは全く異なる、標的がん細胞内でのみ薬効を発現し、正常細胞内では副作用を発現しない“ がん細胞選択的核酸医薬” という新しい研究戦略を提案し、その実現に向け研究を推進しています。具体的には増幅期のがん細胞に特徴的な低血流に基づく細胞内低酸素状態、ハイポキシアに注目し、ハイポキシアにより誘起される細胞内pH 低下をトリガーとした選択的薬効発現を実現する人工核酸創製に取り組み、核酸塩基の配向変化に基づく標的RNA 認識のOn-Off スイッチングを実現しました。現在、本学医学部 五十嵐教授、児玉教授らとの共同研究により、動物レベルの実証実験に取り組み、良好な初期的データを得ています。標的細胞選択的薬効発現という研究戦略は世界的にも類がなく、高い独自性を有しており、世界的に高く評価されています。
実用化イメージ

上記、がん細胞選択的核酸医薬創製の研究戦略の実用化を目指し、細胞内に導入可能な極低濃度の核酸医薬でも効果的な薬効発現を目指し、RNaseH を活用し、標的疾患細胞内で約1,000倍過剰に存在すると報告されている標的RNA を分解可能な触媒的核酸医薬法に適用可能なキメラ人工核酸(図3)開発に取組み、細胞レベルで有効性を実証し、動物試験に取組んでいます。

研究者

多元物質科学研究所

和田 健彦  

Takehiko Wada

運動リハビリ・健康支援のためのウェアラブルシステムの開発

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 事故や病気などによる脳や脊髄の損傷により生じた運動機能の麻痺や、高齢による運動機能の低下に対して、機能的電気刺激(FES)を応用した手足の動作の補助・再建・訓練する技術、慣性センサ(ジャイロセンサや加速度センサ)による計測・評価技術の研究開発を行っています。ウェアラブルシステム化、運動学習のリハビリテーションへの応用、運動機能評価・運動効果判定システム、個人に適した運動プログラム提供を目指しています。
実用化イメージ

電気刺激を用いた新しい運動リハビリ法、運動訓練時の情報提示、運動訓練機器や訓練方法の定量的評価など、健康・福祉、リハビリテーション医療に関する分野への応用が期待されます。

研究者

大学院医工学研究科

渡邉 高志  

Takashi Watanabe

作物の子実生産を向上させる生殖形質に関する研究

前の画像
次の画像
概要

近年の異常気象の多発により、作物の種子、果実生産の低下が危惧されている。これまでに低温、高温ストレス下で応答する遺伝子群を同定しており、ゲノム編集などにより、温度ストレス下でも生産が可能なシステムを構築する。

従来技術との比較

従来から用いられている遺伝子組換え手法に加え、ゲノム編集技術により実用に供することが可能な遺伝子改変が可能になった。

特徴・独自性
  • 作物生産とその生産物の作物・子実は、食糧、環境、エネルギー、アメニティに応用でき、地球温暖化にある21世紀には人類にとって、様々な面においてこれまで以上に重要度が増加しています。その作物の子実生産を向上させるためには、昨今の激変する環境ストレスに耐性を有する作物の開発は至上命題です。特に環境ストレスに対して弱い受粉・受精の生殖形質を改変し、種子や果実生産を向上させることを目的としています。
実用化イメージ

高温や低温ストレス下で子実生産を左右する遺伝子群を同定しています。収量増を見込める F1雑種品種育成に重要な自家不和合性遺伝子の利用も進め、種苗産業などとの連携が可能です。

研究者

大学院生命科学研究科

渡辺 正夫  

Masao Watanabe

医工放射線情報学

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 主に核医学に関わる医用工学分野の研究を行っています。PET やSPECT に代表される核医学検査では、さまざまな薬剤に放射性同位元素をラベルし、その薬剤の体内の動態を非侵襲的に画像化できます。非常に高い感度と定量性を持った検査です。しかし、PET/SPECT のデータは、さまざまな情報、雑音が混合しており、そこから有益な情報を引き出す必要があります。そのために、数理モデルの構築や、画像処理の研究を行っています。
実用化イメージ

画像処理・データ解析ソフトウェアを医療機器メーカーに提供できます。現在、PET は創薬の分野で注目を集めています。分子イメージング技術をいかした早期薬効評価の指標としてPET を利用しようというものです。そのためのPET 評価系の構築技術を提供できます。また放射線の挙動を摸擬するコンピュータシミュレーション技術の提供も可能です。

研究者

先端量子ビーム科学研究センター

渡部 浩司  

Hiroshi Watabe