アルファベットのキーワード 138ワード

C

CO2フリー

超臨界法で合成された金属酸化物ナノ粒子を用いた炭化水素の低温改質反応

前の画像
次の画像
特徴・独自性
  • 超臨界水を反応場とする有機修飾ナノ粒子の合成技術を利用することで、サイズ、結晶面が制御された、様々な金属酸化物ナノ粒子の合成に成功している。低温域での酸素貯蔵/放出能力が非常に高く、有意な速度で酸化的炭化水素の改質反応が進行する。
実用化イメージ

バイオマス廃棄物・重質油やメタンの低温改質反応。将来的には廃棄物・プラスチックのCO2フリー完全リサイクルをはじめとした低炭素社会構築につながる技術として期待される。

研究者

高等研究機構材料科学高等研究所 ソフトマテリアルグループ

阿尻 雅文  

Tadafumi Ajiri

Coating

コーティング及び界面修飾に関する分子動力学アプローチ

特徴・独自性
  • 固・液の親和性や濡れ、熱抵抗、分子吸着等のメカニズムを解明し、コーティングや表面修飾などの技術によりこれを制御するための基礎研究を、分子動力学シミュレーションを主な手法として進めている。
  • 熱・物質輸送や界面エネルギー等の理論をバックグラウンドとして、フォトレジストのスピンコーティングからSAM(自己組織化単分子膜)や各種官能基による親水性・疎水性処理まで様々なスケールの膜流動・界面現象を対象としている。また、主に液体を対象として、その熱流体物性値を決定する分子スケールメカニズムや、所望の熱流体物性値を実現するための分子構造に関する研究を行っている。これらの研究に関して興味のある企業との共同研究や学術指導を行う用意がある。
実用化イメージ

研究者

東北メディカル・メガバンク機構 予防医学・疫学部門

小原 拓  

Taku Obara

Cognitive Intervention

脳機能および精神的健康感の維持向上法開発研究

特徴・独自性
  • スマート・エイジング国際共同研究センター(通称SAIRC)は、国際的な研究拠点として、超高齢社会における新たな統合的加齢科学分野を切り開き、世界を先導するスマート・エイジング研究を通じて、持続可能型高度成熟社会の形成に寄与するため、文系・理系に拘らない架橋融合的研究、国際共同研究、産学連携研究などを展開します。
  • 脳機能イメージング及び実験心理学的手法を核としながら、心を豊かに穏やかに加齢するための方法論的研究を、脳を直接研究対象とした脳科学研究、認知機能向上法開発のための認知心理学研究、認知症予防、メンタルヘルスを対象とした医学的研究、こころや死生観までを対象とした哲学・心理学研究・倫理学研究などを融合して推進します。
  • スマート・エイジング研究に関する共同研究を募集しますし、学術指導も積極的に行います。
実用化イメージ

研究者

加齢医学研究所 脳科学研究部門 応用脳科学研究分野

川島 隆太  

Ryuta Kawashima

crystal growth

外場印加により固液界面のエネルギー状態を制御した新しい結晶成長

前の画像
次の画像
特徴・独自性
  • 我々は、結晶成長過程における界面現象と育成された結晶の特性の関係を明らかにするといった立場から、主として融液からのバルク結晶の成長に取り組んでいます。特に、界面に電場を印加することにより結晶と融液の間に電気二重層という極薄領域を形成しナノメータスケールで結晶育成を制御しています。電場印加による具体的な結晶作製研究例として、
  • 1. 融液と結晶のエネルギー関係を制御し、従来育成が不可能とされていた高温圧電センサー用ランガサイト型結晶の開発。
  • 2. 結晶化が困難なタンパク質の核形成を電場印加により容易に実現。
  • 3. シリコン結晶成長において界面の不安定性を制御し、理想的な構造を持つシリコン結晶の開発。
  • このように21 世紀高度情報化社会に必要な、光学、圧電、磁性等の分野で有用な新結晶や、あるいは、従来育成が困難とされていた結晶の創製の分野で有意義な共同研究ができるものと考えます。
実用化イメージ

研究者

未来科学技術共同研究センター 開発研究部 持続可能な社会に資する結晶材料・応用デバイスの開発

宇田 聡  

Satoshi Uda

生体組織内のタンパク質等多成分拡散現象に関する研究

前の画像
次の画像
特徴・独自性
  • 物質拡散係数の高精度測定は、諸々の熱物性値測定の中でも極めて困難であり、特にタンパク質においては物質自体が稀有であること、および分子数が大きいため拡散現象が非常に遅いことなど、多くの点から困難とされてきた。これに対し、当研究分野では最新画像処理技術を用いることにより、少量のタンパク質試料で微小非定常拡散領域を高精度に測定する方法を開発した。既存の光学系に位相シフト技術を組み込むことで、解像度がλ /100 程度の精度を実現し、拡散場内のわずかな濃度変化も検知できるシステムを測定系を構築した。生体組織内に代表されるような極限環境下では複数の物質が同時に物質移動する多成分系拡散現象がおきている。本測定法では同時に複数の物質の拡散係数を測定できる特徴を有しており、この測定法を用いることで多成分拡散現象を定量的に評価できる。この技術を産業界で活用したい企業や団体との共同研究を強く希望する。
実用化イメージ

研究者

流体科学研究所 複雑流動研究部門 伝熱制御研究分野

小宮 敦樹  

Atsuki Komiya

D

DDS

金属ナノ粒子を用いた抗原虫薬の開発 アミノ酸被膜による効果の増強

前の画像
次の画像
特徴・独自性
  • 金属ナノ粒子は、一般的な大きさの金属個体とは異なる物理的、化学的特性を持つ。これらの特性は金属ナノ粒子の比表面積が極めて大きいことに起因する。また、その量子サイズによって特有の物性を示す。
  • さらに、金属ナノ粒子は微生物を殺滅する活性酸素種を産生する能力があり、膜透過性も持つ。
  • 我々は、アミノ酸被膜金属ナノ粒子がトキソプラズマの増殖を抑制することを報告している。
実用化イメージ

マラリアを始め、人類の脅威となっている原虫感染症の予防、治療、診断について、金属ナノ粒子を使った新しいツールを提供できる可能性がある。ナノテクノロジー分野、動物医療を含めた医薬品分野等において活用の可能性がある。

研究者

大学院農学研究科 生物生産科学専攻 動物生命科学講座(動物環境管理学分野)

加藤 健太郎  

Kentaro Kato

Developmental Cognitive Neuroscience

脳機能および精神的健康感の維持向上法開発研究

特徴・独自性
  • スマート・エイジング国際共同研究センター(通称SAIRC)は、国際的な研究拠点として、超高齢社会における新たな統合的加齢科学分野を切り開き、世界を先導するスマート・エイジング研究を通じて、持続可能型高度成熟社会の形成に寄与するため、文系・理系に拘らない架橋融合的研究、国際共同研究、産学連携研究などを展開します。
  • 脳機能イメージング及び実験心理学的手法を核としながら、心を豊かに穏やかに加齢するための方法論的研究を、脳を直接研究対象とした脳科学研究、認知機能向上法開発のための認知心理学研究、認知症予防、メンタルヘルスを対象とした医学的研究、こころや死生観までを対象とした哲学・心理学研究・倫理学研究などを融合して推進します。
  • スマート・エイジング研究に関する共同研究を募集しますし、学術指導も積極的に行います。
実用化イメージ

研究者

加齢医学研究所 脳科学研究部門 応用脳科学研究分野

川島 隆太  

Ryuta Kawashima

DMRV

遠位型ミオパチーに対する治療法の開発

前の画像
次の画像
特徴・独自性
  • 縁取り空胞を伴う遠位型ミオパチー(DMRV) は、体幹から離れた部位の筋肉から萎縮していく極めて稀な疾患である。本疾患患者ではGNE という酵素の遺伝子に変異がありN-アセチルノイラミン酸の合成が十分にできない。国立精神・神経医療研究センター疾病研究第一部において、DMRVのモデルマウスを作製し、発症前からN-アセチルノイラミン酸を投与し、運動能力や筋病理像などが正常マウスと同程度に推移することを明らかにした。
  • N-アセチルノイラミン酸を摂取することにより、DMRV患者において病態の改善又は進行抑制が期待できると考えている。N- アセチルノイラミン酸は、生理的に存在する物質であり、生体内でも合成され、食物としても摂取されている(図)。またN- アセチルノイラミン酸は過去に去痰剤として開発しようされ非臨床試験成績や少ない投与量ではあるが臨床試験成績が公表されている。これらの情報を参考資料とした上で、毒性試験を実施し、現在、第㈵相臨床試験を実施中である。本研究に関して興味のある企業への学術指導をすることが可能である。
実用化イメージ

研究者

大学院医学系研究科 医科学専攻 神経・感覚器病態学講座(神経内科学分野)

青木 正志  

Masashi Aoki

DNA分析

水産生物における遺伝的多様性モニタリングシステムの構築

前の画像
次の画像
特徴・独自性
  • 遺伝的多様性の維持は、水圏生物の持続的利用や保全を図る上で重要なポイントです。本研究は、DNA分析と集団遺伝学的な解析を主なツールとして、1)自然集団の遺伝的構造や系統地理を明らかにして保全方策を提言し、2)栽培漁業の対象となっている魚介類について、放流種苗の遺伝的特徴や海域での種苗の生残率または再生産への寄与度を明らかにすることによって、より良い放流方法の確立に貢献することを目指しています。
実用化イメージ

海洋や河川・湖沼の生態系の現況調査においては、種数や個体数だけではなく遺伝的多様性についてもモニタリングしておくことの重要性が認識されつつあります。主に分析手法や解析方法についての学術指導や共同研究を行う準備があります。

研究者

大学院農学研究科 附属複合生態フィールド教育研究センター 複合水域生産システム部(沿岸生物生産システム学分野)

池田 実  

Minoru Ikeda

drug design

実践的かつ経営的処方を支援する薬品決定支援システムおよびプログラムの開発

前の画像
次の画像
特徴・独自性
  • 糖尿病における実地医療現場で実践的かつ経営的処方術を実施するための薬剤決定支援システムおよび薬剤決定支援プログラムを発明した(特許第4176438号)。
  • 我が国の保健医療現場における医師の処方は1 剤205 円以内の6 剤投薬と規定されている。この制限を越えた投薬を施行した場合には薬価請求額の10% が減額されるしくみになっている。但し、服用法が同じで、かつ205 円以内に収まる複数の薬剤は1 剤とみなされ、6剤を越えた処方がなされても6 剤以下の処方と扱われる。
  • 一方、我が国の高齢化社会では加齢に伴い糖尿病患者が増加している。糖尿病合併症を含めその治療薬を1 人の内科医が処方すると容易に6 剤投薬を超えてしまう。そこで医療経営的にジェネリック(後発品)の使用が不可欠となる。しかし、医師が先発品と後発品の医薬情報を薬価まで熟知し瞬時に処方を行うことは極めて難しい。本発明は主に糖尿病診療における内科医の処方技術を実践的かつ経営的に改善するものである。
  • 本発明(特許)を活用して事業化を企てる企業または出資者・開発支援者を求めている。
  • ソフトウエアのサンプルあり。
実用化イメージ

研究者

サイクロトロン・ラジオアイソトープセンター 糖尿病制御学寄附研究部門

野々垣 勝則  

Katsunori Nonogaki

DTN

圏外でも通信可能な“スマホdeリレー”

前の画像
次の画像
特徴・独自性
  • 爆発的に普及したスマートフォンですが、そのWiFiを活用すれば、携帯電話がつながらなくても、隣の人はもちろん、周囲のスマートフォンにデータをリレーしてもらうことで遠くの人とも情報を交換することが可能になります。現在研究開発を進めている省電力技術やセキュリティ技術が確立すれば、電池残量を気にする必要もなく、他人にデータを見られる心配もなく、通信することが可能になります。
実用化イメージ

災害等の緊急時の情報発信、商店街等での広告・クーポン配布、イベント会場等での少人数グループ内情報交換、団体旅行・登山等でのトランシーバ的な利用、新興国等での通信サービスなどへの応用が期待できます。

研究者

大学院情報科学研究科 応用情報科学専攻 応用情報技術論講座(情報通信技術論分野)

加藤 寧  

Nei Kato

E

electron correlation

分子性有機物質の新電子物性開拓

前の画像
次の画像
特徴・独自性
  • 有機分子の集積によって構成されている分子性伝導体を中心に研究を進めています。分子で構成されている有機物質の特徴は“やわらかい”ことです。この特長から、近年、有機ELデバイスなどの軽量で“曲がる”エレクトロニクス材料として注目されています。当研究室では、このような分子性有機物質の基礎的物性( 金属- 超伝導- 絶縁体) の解明、新物性の開拓を目指しています。
  • 分子性有機物質は、無機物質と比べて“やわらかく”大きく広がった分子軌道や電荷の分布、また分子自身の持つ構造自由度などのために、電荷- スピン- 分子格子- 分子内結合の間にゆるやかで大きな自由度を有しています。このナノ分子サイズの“やわらかい”複合的自由度と強く関係している超伝導から絶縁体までの多彩な電子状態がバルクな物性として現れます。このような分子性物質の特長をフルに活かして、電子物性物理の重要で興味ある問題にチャレンジしています。 このような研究に興味のある企業への学術指導を行なう用意があります。
実用化イメージ

研究者

金属材料研究所 材料物性研究部 低温電子物性学研究部門

佐々木 孝彦  

Takahiko Sasaki

Electrostatic Transportation

ナノ・マイクロ粒子の静電輸送による微粒子超音速流動加工の高性能化

前の画像
次の画像
特徴・独自性
  • ナノ・マイクロ粒子超音速流動加工は、微粒子を非熱の高速ジェット中に注入し、粒子を基板に高速衝突させることにより基板上に皮膜を形成する省エネルギー型成膜法である。本研究では、微粒子動態を考慮した超音速流動モデルおよび皮膜形成モデルを統合した新たなモデルを提案した。また、最先端歯科医療等への本成膜法の革新的応用を想定し、実機を対象として実時間数値計算と実験の統合解析を行い、本プロセスの高性能化を行った。さらに、静電気力を用いた帯電ナノ粒子の加速制御により、微小空間において衝撃波や複雑干渉を伴う極限環境下でのナノ粒子高速輸送を可能にし、成膜効率が向上することを数値計算により示した。
  • なお、本研究は、2008 年度日本機械学会奨励賞( 研究) を受賞した。本技術を産業界で活用したい企業や団体との共同研究を希望する。
実用化イメージ

研究者

流体科学研究所 流動創成研究部門 電磁機能流動研究分野

高奈 秀匡  

Hidemasa Takana

energy expenditure

代謝解析装置の開発

前の画像
次の画像
特徴・独自性
  • 生体の代謝状態を的確かつ簡便に測定することができるように構成した生体の代謝状態を解析する装置及録媒体に関する発明であり、任意の時点と異なる2 時点間での脂肪組織における酸素消費量とエネルギー産生量を換算するソフトウエアを備える点に特徴を有する(特許第3848818)。
  • 前記健康管理に有益な指針情報として、身体インピーダンスの計測値に基づく任意の1 時点における代謝状態を表す指標と、異なる2 時点における代謝状態を表す指標(脂肪組織における酸素消費量とエネルギー産生量)を算出できる点に特徴を有する。本算出法は既存の体脂肪計に備えられている基礎代謝量の推定換算方法とは全く別の算出式を使用し、より高精度である。本装置の解析ソフトは、インピーダンス値や除脂肪量を算出する装置に追加して備えることも可能である。
  • 本発明(特許)を活用して事業化を企てる企業または出資者・開発支援者を求めている。
実用化イメージ

研究者

サイクロトロン・ラジオアイソトープセンター 糖尿病制御学寄附研究部門

野々垣 勝則  

Katsunori Nonogaki

energy metabolism

代謝解析装置の開発

前の画像
次の画像
特徴・独自性
  • 生体の代謝状態を的確かつ簡便に測定することができるように構成した生体の代謝状態を解析する装置及録媒体に関する発明であり、任意の時点と異なる2 時点間での脂肪組織における酸素消費量とエネルギー産生量を換算するソフトウエアを備える点に特徴を有する(特許第3848818)。
  • 前記健康管理に有益な指針情報として、身体インピーダンスの計測値に基づく任意の1 時点における代謝状態を表す指標と、異なる2 時点における代謝状態を表す指標(脂肪組織における酸素消費量とエネルギー産生量)を算出できる点に特徴を有する。本算出法は既存の体脂肪計に備えられている基礎代謝量の推定換算方法とは全く別の算出式を使用し、より高精度である。本装置の解析ソフトは、インピーダンス値や除脂肪量を算出する装置に追加して備えることも可能である。
  • 本発明(特許)を活用して事業化を企てる企業または出資者・開発支援者を求めている。
実用化イメージ

研究者

サイクロトロン・ラジオアイソトープセンター 糖尿病制御学寄附研究部門

野々垣 勝則  

Katsunori Nonogaki

EV用充電システム

非接触エネルギー伝送を用いた産業機器・医療機器の開発

前の画像
次の画像
特徴・独自性
  • 独自技術を用いた非接触電力伝送システムを中心に数ワットから数十キロワットクラスの幅広い開発を行っている。産業機器ではモバイル機器を始めEV や工場内搬送装置に至る幅広い対応が可能である。医療機器では人工心臓への電力伝送や、主に四肢不自由者の運動機能再建を目指す機能的電気刺激装置(FES)の開発、がん治療として体内の温度計測を必要としない小型埋込素子を用いたハイパーサーミアの開発を行っている。
実用化イメージ

産業・医療用途共に、独自の信号伝送システムも併せて開発を行い実用化している。

研究者

災害科学国際研究所 レジリエントEICT研究推進部門 レジリエントEICT

松木 英敏  

Hidetoshi Matsuki

eラーニング

対話型教授システムIMPRESSIONによる次世代教育環境

前の画像
次の画像
特徴・独自性
  • IMPRESSION は、対面教育、遠隔教育の双方において各種マルチメディア教材を活用した対話型インストラクションのための教授システムです。このIMPRESSION では、講師と学習者との対話に着目した成長型教授設計プロセスモデルであるダブルループモデルに基づき、実際の学習者に応じたインストラクションの設計、実施、評価、改善を可能とし、これにより、効果的で魅力的な教育を実現します。
実用化イメージ

一般的な学校教育現場における高度なメディア活用教育のほか、遠隔地の社員を対象とした研修等、各種教育の実施環境、および、そのためのデザインツールとして活用することができます。

研究者

データ駆動科学・AI教育研究センター デジタル教育研究部門

三石 大  

Takashi Mitsuishi

F

fMRI

脳を知れば人間がわかる

前の画像
次の画像
特徴・独自性
  • 人間らしい精神と行動を実現する脳の仕組みを、脳機能計測(図1)と生理・行動計測を駆使して明らかにしている。心の仕組みは、自己と外界との関係性の認知処理という視点から、3つの脳領域群(図2)で処理される「出力とフィードバック入力の関係性」(図3)として整理される:身体的自己(身体と外界の関係:A)、社会的自他関係(自己と他者との社会的関係:B)、自己の社会的価値(C)。
実用化イメージ

心の働きを脳活動から推測する技術の開発や、人間らしい判断を可能にするアルゴリズムの開発を通じて、製品開発・評価に応用できる可能性がある。

研究者

加齢医学研究所 脳科学研究部門 人間脳科学研究分野

杉浦 元亮  

Motoaki Sugiura

脳機能イメージング技術のインタフェース評価への応用

前の画像
次の画像
特徴・独自性
  • 使いやすい製品やインタフェースを作るためにはユーザである人間を含めた評価が重要であるが、人間の多様性、そして優れた適応性のためにシステム側の評価を独立して行うことは困難である。本研究では、最先端の脳機能イメージング技術を利用することによりインタフェースの評価を行う研究を行っている。MRIやNIRS等の最先端の計測装置を利用して脳活動を計測することにより、インタフェースに対峙している人間の認知活動を直接観察することができる。それにより間接的な指標では推定の難しい認知的な負荷を直接評価することが可能となる。特に川島研究室と共同で開発した超小型NRIS 装置は、20 名までの脳活動をリアルタイムで同時に計測できる世界で唯一の装置であり、この装置を利用して複数人の脳活動に基づく共感の計測の可能性を検討している。
実用化イメージ

これまで主観的な評価に頼ってきたユーザビリティ評価に代わって客観的な評価を行う可能性を有しており、人間を対象にした評価を必要とする企業に対して学術指導を行う用意がある。

研究者

大学院工学研究科 技術社会システム専攻 ソーシャルシステムデザイン講座(社会技術システム分野)

高橋 信  

Makoto Takahashi

FPD

電子デバイスの高性能・高信頼化のための配線材料と形成プロセスの開発

前の画像
次の画像
特徴・独自性
  • 半導体デバイスからなる電子製品は、半導体自体はもとより、半導体に接続する金属配線があって製品として動作する。金属配線に求められる課題は、半導体材料との良好な電気的コンタクト、相互拡散の防止、良好な密着性、および配線材料の低電気抵抗、耐腐食性、プロセス耐性などがある。本研究室では、種々のデバイスのニーズにあった配線材料の開発ならびにコストパフォーマンスを追求したプロセス技術を開発することによって、高性能かつ高信頼性の先端デバイス開発に貢献している。
実用化イメージ

Si半導体多層配線において拡散バリア層を自己形成するCu合金配線、IGZO 酸化物半導体に対して熱反応によるキャリアドーピングを行えるCu 合金配線、SiC パワー半導体に対して優れた熱・機械的信頼性と良好なコンタクト特性を示すNb 合金配線、タッチパネル用途などのITO透明導電膜に対するCu 合金配線、太陽電池におけるCu ペースト配線、などがある。

研究者

大学院工学研究科 知能デバイス材料学専攻 インターコネクト・アドバンスト・テクノロジー共同研究講座

小池 淳一  

Junichi Koike