登録されている研究テーマ 416件

数理生物学

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 現実の生命現象や社会現象の特性を科学的に議論するための研究の展開の礎となるような数理的・理論的研究のための数理モデリング、数理モデル解析を行っています。現象についてどのような理論的課題を取り上げるか、問題をいかに数理モデルとして構成するか、構成された数理モデルに関してどのような数理的解析を行なうか、数理的解析結果をいかに生命科学的・社会科学的議論として取り上げるか、ということが重要な観点となります。
実用化イメージ

以下のような社会実装への応用が想定されます。・現実の生命現象や社会現象に対する理論的なアプローチを要する施策策定やアセスメント・環境評価に係る基礎理論の適用、または、データの視覚化に伴って必要となるスケルトンモデルの構築など

研究者

大学院情報科学研究科

瀬野 裕美  

Hiromi Seno

スピン制御レーザー

前の画像
次の画像
特徴・独自性
  • Qスイッチという光学デバイスは、高安定・高出力で知られる固体レーザーのパワーを著しく増大することができます。現在は、電気光学効果あるいは音響光学効果を用いたQスイッチが主流ですが、磁気光学効果を用いても、Qスイッチができることを、我々は見出しました。実際に、磁気光学材料を使って、Qスイッチを作製し、「スピン制御レーザー」という名前で、デバイス化しています。
実用化イメージ

膜型のQスイッチは、他にありません。磁性膜を使うことで初めて実現されました。固体レーザーのパワーを飛躍的に増大できるものであり、現在のハイパワーなレーザーを、小型化できるデバイスと言えます。

研究者

電気通信研究所

後藤 太一  

Taichi Goto

スピントロニクス材料と情報通信技術への応用

前の画像
次の画像
特徴・独自性
  • 1. マンガン系磁性材料を主とする新薄膜磁性材料の研究開発(図1)
  • 2. フェムト秒パルスレーザーに対する磁性体の超高速応答の基礎研究(図2)
実用化イメージ

次のような、電子・通信産業と産学連携の可能性があります。
○ 新材料を用いたトンネル磁気抵抗素子の、大容量磁気メモリ、磁気ストレージ、ミリ波〜テラヘルツ波通信素子への応用。
○ フェムト秒パルス光を用いたテラヘルツ波輻射への応用。
○ パルス光を用いた磁気スピン波の制御と論理デバイスへの応用。

研究者

高等研究機構材料科学高等研究所

水上 成美  

Shigemi Mizukami

スピントロニクス素子技術

特徴・独自性
  • 電子の持つ電気的性質と磁気的性質を同時に利用することで発現する新奇物理現象を明らかにし、工学応用に繋げることを目的とした研究を進めている。論理集積回路の高性能化、低消費電力化、既存のノイマン型計算機では実現が困難な複雑なタスクを処理する脳型コンピュータ、確率論的コンピュータ、量子コンピュータなどを実現する。
実用化イメージ

研究者

電気通信研究所

深見 俊輔  

Shunsuke Fukami

全てを最適化する Optimal Society

前の画像
次の画像
特徴・独自性
  • 量子アニーリングと呼ばれる最適化技術を世界でいち早く産業化に向けて、その限界を突破する基礎技術、複数の企業との応用可能性の探索に取り掛かっている。
  • その手法の優位性は、一度最適化したい目標を描くコスト関数を定式化するだけで利用できる点だが、我々はさらに最適化しやすい形、学習による逐次最適化、ブラックボックス最適化など、手法にとどまらない展開をしている。
  • 特に自動運転、工場内の物流、災害時の避難誘導へ応用展開中である。
実用化イメージ

各種車両の自動運転、災害時の避難経路誘導などの経路探索問題、工程スケジューリングや多大な組合せ問題への応用。
各業界における組合せ最適化問題への課題解決方法を提供可能。
( 交通・流通、製造、材料、創薬等)

研究者

大学院情報科学研究科

大関 真之  

Masayuki Ohzeki

すべり転倒の工学解析に基づく転倒抑制フットウェアの開発

前の画像
次の画像
特徴・独自性
  • 歩行動作解析ならびに靴底/床面間のトライボロジー解析に基づいて、すべりなどの外乱による転倒防止のための歩行方法を提案している。さらに、油の上でも超耐滑性に優れているゴム靴底パターンや、防滑性の高い歩道用コンクリート平板、靴/ 床の摩擦係数測定システムを地域企業とともに開発し、実用化に成功している。
実用化イメージ

労働現場における転倒事故や高齢者の転倒事故を防止するための製品開発など。

研究者

大学院工学研究科

山口 健  

Takeshi Yamaguchi

スマート・エイジング実践法の開発

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 健康長寿社会の実現をめざし、個人が多様で複雑な社会の中で、脳と心の健康を維持・向上させ、発達・加齢の各段階で健やか、且つ、穏やかな心を保つことを可能とする様々な技術開発を、脳機能イメージング研究、認知科学、心理学などの基礎研究の知識と技術を応用して行います。健康な社会生活を送っている人たちが、より幸せな人生を歩むことができることを目的としていることが最大の特徴です。
実用化イメージ

生活の質向上、認知機能維持・向上、ストレス軽減、コミュニケーションスキル向上などを可能とするシステム開発を目指すため、医療・福祉、教育、情報・通信、生活に関する製造業全般との産学連携を想定しています。

研究者

加齢医学研究所

川島 隆太  

Ryuta Kawashima

生態学

特徴・独自性
  • 生態系の複雑性(多次元性や非線形性)を考慮した生態学を推進している。食物網、多種共存や生態系機能に関する理論研究のほか、特に最近は環境DNAや音響観測といった手法に基づく生態系観測や大規模観測データに基づいた実証研究、生態系の動態予測・制御の問題に興味がある。
実用化イメージ

研究者

大学院生命科学研究科

近藤 倫生  

Michio Kondo

生体機能の可視化および制御技術の開発

概要

従来技術との比較

特徴・独自性
  • 生体分子の機能を正しく理解するには他の生体分子との相互作用が保たれた状態、すなわち生きた状態で観察することが重要です。そこで、有機化学および蛋白質科学の双方からのアプローチにより新たな機能性分子を開発し、生体分子の可視化および光を用いた機能制御に取り組んでいます。特に、オルガネラ内の分子やイオン濃度の定量や、蛋白質機能を光操作するケージド化合物あるいはフォトスイッチ化合物の開発に実績があります。
実用化イメージ

研究者

多元物質科学研究所

水上 進  

Shin Mizukami

生体高分子が起こす反応・構造変化の可視化

前の画像
次の画像
概要

生命にとって重要な構成物質であるタンパク質は細胞情報伝達や生体内触媒反応など様々な役割を果たします。タンパク質立体構造はそうした機能と深く相関しており機能発現の際にどのような構造変化を起こすのか興味が持たれています。当研究室ではNanoTerasuの放射光やX線自由電子レーザー等の量子ビームを用いて、タンパク質の中で起こっている化学反応や構造変化を高い時間・空間分解能で可視化する技術を開発します。

従来技術との比較

従来の方法ではナノスケールのタンパク質がフェムト秒~ミリ秒といった高速で動く様子を原子レベルで捉えることは困難でした。

特徴・独自性
  • このシーズは以下の特徴を持ちます。
  • ・タンパク質の構造変化や反応を高い時間・空間分解能で可視化します。
  • ・動的構造解析を基に新たな分子設計が期待されます。
  • ・微結晶にX 線自由電子レーザーを照射し、得られるX 線回折像からタンパク質構造解析を行う手法である「シリアルフェムト秒結晶構造解析」があります。これによりフェムト秒X 線レーザーにより放射線損傷が顕在化する前に回折像の取得が可能です。
実用化イメージ

放射光やX 線自由電子レーザー等の量子ビームを用い、タンパク質の中で実際に起こっている化学反応や構造変化を高い時間・空間分解能で可視化する技術を開発し、得られた動的構造を基に新たな分子の設計を目指します。

研究者

多元物質科学研究所

南後 恵理子  

Eriko Nango

生体材料やシミュレーションによる医療デバイス開発

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 医療デバイスの状態が視認でき、かつ生体にかかるストレスを測定できる生体モデルを開発しています。我々の生体モデルはハイドロゲル素材のため、透明で表面摩擦抵抗が低いことが特徴(図1)です。さらに、ヒト血管の力学的特性および形状を忠実に再現し、血流の実験的測定をすることが可能(図2)です。また、最適化手法を用いた医療デバイスの最適なデザインや操作の研究も行っており、特に粒子塞栓のコンピュータシミュレーション(図3)やカテーテル操作の研究開発をしています。これらは、デバイス開発初期段階でのPOC(proof ofconcept)に役立ち、動物実験の減少にも貢献が期待されます。
実用化イメージ

医療デバイス開発を進める企業、業界との連携が可能です。医療画像診断装置や画像処理、MEMS を用いた医療機器開発のPOC、医療機器の標準化、医療トレーニング企業、高分子素材企業など、様々な場面で協働が期待できます。

研究者

流体科学研究所

太田 信  

Makoto Ohta

生体信号の解析と視覚化

前の画像
次の画像
特徴・独自性
  • 多彩なセンサーの開発やICT 技術の発展により、膨大な生体信号を記録・保存することが可能になってきた。我々は、その信号を、病気の診断や健康の増進への利活用を目指して様々な信号処理方法を研究している。例えば、妊娠中の母親の腹部に張り付けた電極から子宮内胎児の心電図を高精度に抽出するアルゴリズムや、多種の生体信号の時間的関係から自律神経系などの状態を推定し、可視化するアルゴリズム等の開発を行っている。
実用化イメージ

生体信号の解析・可視化・診断システム。
自動車運転手や各種システムオペレータの集中度や眠気のモニタリング・評価。
生体リズムの特性を考慮した就労スケジューリング。

研究者

未踏スケールデータアナリティクスセンター

中尾 光之  

Mitsuyuki Nakao

生体組織内細胞の転写因子活性の定量測定

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 遺伝子発現プロファイルを計測する手法は多様にありますが、遺伝子の発現を制御する転写因子の活性を定量評価する技術は不足しています。我々は生体組織内細胞や培養細胞が発現する複数の内在転写因子の転写活性を直接定量評価する技術を開発しました。本技術を用いることにより病態や生理活動に関連して生体組織内細胞の状態がどのように変化するのか解析することができます。
実用化イメージ

本技術を使用し、ヒト培養細胞や実験動物の生体組織内の多数の転写因子活性を効率的に計測することで、転写因子活性を標的とした創薬や、ドラッグデリバリーシステムの探索、医薬品の薬効、副作用スクリーニングなどへの活用が期待できます。

研究者

大学院生命科学研究科

安部 健太郎  

Kentaro Abe

生体用モーションキャプチャシステムの開発

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 生体に関する様々な運動を非接触かつ非侵襲的に計測することが可能な生体用モーションキャプチャシステムの開発を行っています。口腔内など遮蔽された空間でも利用可能な磁気式システムでは、最新の磁気工学技術によるLC 共振型磁気マーカを利用し、外部からの磁場印加によるシステムのワイヤレス化を実現しました。さらに光学式システムでは小型軽量の赤外線反射マーカを利用し、250ヘルツにて50箇所までリアルタイムでの同期的計測が可能なシステムの開発に成功しています。
実用化イメージ

本システムでは生体に関する様々な動作解析が可能で、非接触かつ非侵襲的な動作解析を必要とする診断・医療機器などへの応用が可能です。条件に合わせてシステムを特化することもできるので、本システムを活用したい企業や団体との共同研究を希望します。

研究者

大学院歯学研究科

金髙 弘恭  

Hiroyasu Kanetaka

生物活性天然物をもとにした化合物ライブラリー合成法

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 生物活性をもつ天然物の骨格をもとに迅速な類縁体合成法を開発しています。環状デプシペプチド、複素環化合物、テルペン、ステロイド、糖鎖、さらにそれらのハイブリッド化合物等幅広い化合物の合成に精通しています。化合物ライブラリーを構築するため、固相法を用いたコンビナトリアル合成法を開発しています。HDAC阻害、テロメラーゼ阻害、V-ATPase阻害作用をもつ化合物の合成を行っています。
実用化イメージ

標的タンパク質を明らかにするためのペプチドタグと生物活性化合物を連結する分子プローブ合成法を確立しています。固相合成を利用して類縁体を迅速合成し、創薬のシーズを探索する研究のほか、結合タンパク質のネットワーク解析のプローブ合成について学術指導および共同研究する準備があります。

研究者

大学院薬学研究科

土井 隆行  

Takayuki Doi

生物活性の探索をアウトソーシングしませんか - ウイルス・腫瘍・細菌を中心に -

前の画像
次の画像
概要

感染症予防には感染対策、ワクチンもありますが、それらをすり抜けて感染してしまうこともあります。また時間とともに免疫低下も起こりえます。その治療薬を開発しています。

従来技術との比較

主たるウイルス感染症をカバーしています。感染性微生物と用いてスクリーニングします。P3施設が利用できます。

特徴・独自性
  • 当研究室では様々な生物活性探索アッセイ方法を確立しています。その成果として日本たばこ産業と共同開発した抗HIV 剤、「エルビテグラビル」が臨床応用されています。他にも、新規の作用機序を有する逆転写酵素阻害剤(EFdA)や抗ガン剤(S-FMAU)を開発してきました。具体的には、1)抗ウイルス剤や抗菌剤などの活性評価、2)抗腫瘍活性の測定、3)新たなスクリーニング法の確立などを行います。
実用化イメージ

新たなターゲットに対するhigh through-put screening 確立の受託も可能ですので個別にご相談ください。P3実験施設を必要とする共同開発や他の微生物を含めた学術指導にも応じます。

研究者

災害科学国際研究所

児玉 栄一  

Eiichi Kodama

生物のようにレジリエント(しなやかでタフ)な人工物の開発

前の画像
次の画像
特徴・独自性
  • 生物は、比較的単純な機能を有する要素が多数集まって相互作用することで、予測不能的に変動する実世界環境下であってもしぶとくかつタフに振る舞うことができる。当研究室では、自律分散制御という概念を基盤として、このように優れたリジリアンスを持つ生物の設計原理の解明を通して、従来の人工物に比べて著しい環境適応性や耐故障性を有する人工物の設計・開発に関する研究を進めている。
実用化イメージ

大自由度システムの制御や、実世界環境下で適応的に行動するロボットの開発など。

研究者

電気通信研究所

石黒 章夫  

Akio Ishiguro

生物模倣材料・デバイスの開発

前の画像
次の画像
特徴・独自性
  • 生物の優れた機能を学び、材料・デバイスの創成に取り入れることで、生物を超える機能を示す機能を創出する『生物模倣工学』を目指しています。例えば、ムール貝に学んだ表面処理・接着剤の開発、ウツボカズラに学んだ抗生物付着基板の開発、ヘモグロビンに学んだ高活性燃料電池(水素・酵素・微生物等)の非白金触媒設計、生物の針に学んだ針型バイオセンサーなど多岐にわたります。
実用化イメージ

電気化学、高分子化学を基盤に金属空気電池・燃料電池・表面処理・接着・バイオセンサー等を含むエネルギー・バイオ・電気電子領域に関する技術・知見を提供します。

研究者

高等研究機構学際科学フロンティア研究所

阿部 博弥  

Hiroya Abe

精密ものづくり計測に関する研究

前の画像
次の画像
特徴・独自性
  • 精密加工品の形状及び精密機械の運動を必要な精度で計測するという精密ものづくり計測の研究に取り組んでいる。独自の計測原理に基づいて、グレーティングなどの微細格子と波動光学系を組み合わせることによって、超精密ものづくり計測の基本道具となる高精度かつコンパクトな多軸変位、角度センサを実現させている。各種超精密及びマイクロ加工品の形状を高速高精度に測定する実用的なシステムの開発も行っている。
実用化イメージ

多軸変位、角度センサは半導体及び電子部品製造・検査装置、超精密加工機、超精密測定機の運動計測に活用され、また、形状測定システムは超精密加工分野で利用されることを期待し、産業界との共同研究を希望する。

研究者

大学院工学研究科

高 偉  

I Ko