登録されている研究者 431人(研究テーマ419件)

生物活性天然物をもとにした化合物ライブラリー合成法

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 生物活性をもつ天然物の骨格をもとに迅速な類縁体合成法を開発しています。環状デプシペプチド、複素環化合物、テルペン、ステロイド、糖鎖、さらにそれらのハイブリッド化合物等幅広い化合物の合成に精通しています。化合物ライブラリーを構築するため、固相法を用いたコンビナトリアル合成法を開発しています。HDAC阻害、テロメラーゼ阻害、V-ATPase阻害作用をもつ化合物の合成を行っています。
実用化イメージ

標的タンパク質を明らかにするためのペプチドタグと生物活性化合物を連結する分子プローブ合成法を確立しています。固相合成を利用して類縁体を迅速合成し、創薬のシーズを探索する研究のほか、結合タンパク質のネットワーク解析のプローブ合成について学術指導および共同研究する準備があります。

研究者

大学院薬学研究科

土井 隆行  

Takayuki Doi

非水浸超音波可視化手法

前の画像
次の画像
特徴・独自性
  • 水と被検査物との間に固体薄膜を挿入し、薄膜と被検査物との界面に負圧力を付与した状態で高周波数超音波を伝達する独自のドライ超音波法を開発しています。当該原理に基づき試作したドライ超音波顕微鏡により、これまで実現されていなかった水非接触下における電子デバイス内部の高分解能可視化に成功しています(図1)。さらに音響整合層として機能する高分子薄膜を挿入することで、従来水没時よりも高画質な内部画像を得ることも可能にしました(図2)。また、超音波が薄膜を通過する際に生じる音響共鳴現象を利用して、高分子フィルムの音響物性値を測定(図3)するなど、薄物材料の高精度な非破壊評価が可能です。この技術を産業界で活用したい企業や団体との共同研究を希望します。
実用化イメージ

研究者

大学院工学研究科

燈明 泰成  

Hironori Tohmyoh

金属極細線のジュール熱溶接と機能の創出

前の画像
次の画像
特徴・独自性
  • 金属マイクロ・ナノ材料が持つ優れた物理的諸特性を有効に活用して新しい機能を創出するために、電流により発生するジュール熱を利用した極微細材料の溶接、切断手法を開発しています(図1)。2 本の極細線の先端同士を接触させた状態である範囲内の一定直流電流を付与することで、細線接触部を自発的に溶融、凝固させ、同部を溶接できることを見出しました。また当該手法を駆使して極微細材料のマニピュレーションも可能です。
実用化イメージ

素材としての金属極細線から新たな機能を創出できます(図2)。また極微細材料の物理的諸特性を評価する独自の試験技術も開発しており(図3)、これら技術を活用した産学連携が可能です。

研究者

大学院工学研究科

燈明 泰成  

Hironori Tohmyoh

活断層と地震ハザード評価

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 地形・地質調査を通じて、活断層での地震発生履歴を解明し、甚大な被害をもたらす内陸地震の発生規模と確率を予測する研究を行っています。また、三陸海岸の数万年~数十万年の超長期の地殻変動を解明し、海溝型超巨大地震の発生サイクルの解明を目指しています。さらに、大地震の続発性・相互連鎖性を説明する断層モデルを数値計算で再現し、地震の発生予測の高精度化を行っています。
実用化イメージ

活断層の調査にあたっては大規模な調査溝掘削や新しい調査・探査技術の開発が欠かせません。地質・建設コンサルタントなど土木関連企業との連携を考えています。

研究者

災害科学国際研究所

遠田 晋次  

Shinji Toda

燃料電池内部の物質輸送現象の量子・分子論的解析

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 通常の連続体理論では把握できない燃料電池内部の様々な物質輸送特性を、物質を構成する原子・分子の挙動として捉え、量子論と分子運動論をつなぐ独自の手法を用いたマルチスケール解析によりその物質輸送特性の解明を行っています。量子化学計算等の手法により物質輸送現象を支配する量子力学的要因を明らかにし、その本質的な性質を失わない形でポテンシャルモデルを構築し、分子動力学計算に繰り込んだ計算を行っています。
実用化イメージ

燃料電池業界はもちろんのこと、ナノスケールの構造を有するデバイスの流動現象の解析、たとえば半導体製造プロセスや摩擦現象の解析、次世代電源の開発等に応用可能です。

研究者

流体科学研究所

徳増 崇  

Takashi Tokumasu

細胞内移行性と低毒性を備えるカチオン性ポリマー粒子

前の画像
次の画像
概要

細胞内移行性と低毒性を備えるカチオン性ポリマー粒子
https://www.t-technoarch.co.jp/data/anken_h/T19-438.html

従来技術との比較

特徴・独自性
  •  カチオン性ポリマー粒子は、細胞内に取り込まれやすいことから遺伝子導入試薬として使用されています。本発明は、独自に開発したカチオン性ラジカル重合開始剤ADIP を用いることによって作製した細胞内移行性と低毒性を備えるカチオン性ポリマーナノ粒子(ナノゲル)に関するものです。
  •  発明者らは、ADIP を用いて合成したNIPAM ベースのカチオン性ナノゲルに下記特性があることを確認しました。
  •  ・混ぜるだけでHeLa 細胞等の複数種の細胞内に移行しました。
  •  ・細胞内へ移行後も、細胞分裂や褐色脂肪細胞への分化を全く阻害せず、安定に細胞内に保持され続けました。
  •  ・NIPAM 特有の温度応答性を活かして細胞内温度を計測できました。
実用化イメージ

核酸医薬等のDDS キャリア、培養細胞の状態判別指示薬、細胞内温度計等に活用可能です。

研究者

大学院薬学研究科

徳山 英利  

Hidetoshi Tokuyama

試作コインランドリ −MEMSを中心とする半導体試作共用設備−

前の画像
次の画像
前の動画
次の動画
概要

4 インチ、6インチ、一部8インチのMEMSを中心とした半導体試作開発のための共用設備で、必要な装置を必要なときに時間単位でお使いいただけます。東北大学に蓄積された関連ノウハウが利用可能で、スタッフが試作を最大限支援します。東北大学西澤潤一記念研究センターの2 階スーパークリーンルームのうち、約1,200m2を主に利用しています。装置、料金については、ホームページをご覧ください。

従来技術との比較

経験豊富な10人以上の技術スタッフが支援します。エッチング、成膜などの各プロセスの標準的な加工条件を提供していますので、ご要望に応じた試作がすぐに開始できます。シリコン以外の様々な材料にも対応します。

特徴・独自性
  • MEMS、光学素子、高周波部品などのデバイスのほか、半導体材料開発などに対応します。
  • 試作前、試作途中における、デバイスやプロセスの技術相談にも対応しています。
  • デバイスの実装工程に対応する「プロトタイプラボ」も利用できます。
  • 半導体、計測器、センサなどの歴史を学んでいただける博物館もご覧いただけます。
  • 東北大学半導体テクノロジー共創体の一部として、半導体の研究開発、人材育成を推進しています。
  • 学生、企業技術者向けの半導体人材育成プログラムをオンデマンドで実施しています。
  • 文部科学省マテリアル先端リサーチインフラ(ARIM)事業のメンバーとして、設備とデータの共用に取り組んでいます。
実用化イメージ

2010年の開始以降330社以上の企業が利用しています。MEMS等のデバイスメーカーはもちろん、材料や機械部品、装置メーカーからも利用があります。これまでに約10件の実用化支援事例があります。

研究者

マイクロシステム融合研究開発センター

戸津 健太郎  

Kentaro Totsu

糖尿病性腎症の簡易診断ができる!

前の画像
次の画像
概要

フェニル硫酸を認識するモノクローナル抗体
https://www.t-technoarch.co.jp/data/anken_h/T16-063.html

従来技術との比較

特徴・独自性
  •  フェニル硫酸(PS) は、腎疾患マーカーとして公知物質です。摂食後、腸内細菌の働きにより、チロシンからフェノールが産生され、産生されたフェノールは腸で吸収され肝臓でPS に代謝されます。健常であればPSは尿として体外に排出されますが、腎機能が低下していると、体外に排出されず蓄積されていきます。従来、PSの検出は、LC-MS やTOFMS などの機器を用いて行われ、簡易に行うことができませんでした。
  •  今回、発明者らは、PS に対する抗体の作製に成功しました。当該抗体を用いれば、ELISA 法など、容易にPSの検出を行うことが可能となりえます。
実用化イメージ

ELISA キット、抗体試験紙(生体試料は血漿・血清・尿)に応用可能です。

研究者

大学院薬学研究科

富岡 佳久  

Yoshihisa Tomioka

ソトス症候群の簡易スクリーニング法の開発

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  •  ソトス症候群はNSD1遺伝子の欠失または点変異によるハプロ不全により発症する小児期の顕著な過成長、特異的頭顔面、精神発達障害など多様な症状を呈する常染色体優性遺伝性疾患ですが、NSD1点変異の特定は困難で診断に至らないケースも少なくありません。当研究グループはNSD1のハプロ不全で顕著な発現調節を受ける遺伝子群の特定に成功し、これらの遺伝子群の定量による本症のスクリーニング法の開発に取り組んでいます。
実用化イメージ

ソトス症候群のスクリーニングのための臨床検査法の開発を企業と共に取組み、過成長と精神発達障害を来す児の鑑別のための臨床応用を行うことを希望しています。

研究者

大学院医学系研究科

富田 博秋  

Hiroaki Tomita

新規ハイブリッドライス育種基盤

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 両親の良いところを併せ持った多収品種をつくる究極の育種法にハイブリッド品種(一代雑種品種)を作る技術があります。ハイブリッドライスを育種する基盤として、細胞質雄性不稔性と稔性回復システムが使われます。我々は東北大学オリジナルのCW 型細胞質雄性不稔性イネの利用を検討し、その分子基盤を研究しています。CW 細胞質はこれまで不可能であったインディカ品種の雄性不稔化を実現できるので、高い利用価値が期待できます。
実用化イメージ

ハイブリッド品種のイネは、通常の品種と比較して30%ほどの収量増が期待され、その栽培面積は世界全体の13%を占めています。コメ産業の国際化を狙った日本独自の新規ハイブリッドライス育種基盤を提供できます。

研究者

大学院農学研究科

鳥山 欽哉  

Kinya Toriyama

社会における科学・技術 ー 科学・技術の哲学と倫理

前の画像
次の画像
概要

人間が幸せを感じられる社会を作っていくために、テクノロジーの進化と不可分の未来社会をどのようにデザインしていくべきか。近年言われるELSIも念頭に、研究者、技術者、企業の間でwell-beingを実現する技術を目指し、応用哲学・応用倫理学の方面からアプローチする。

従来技術との比較


研究・開発から社会実装に至る過程で、上流の段階から人や世界との関わりやwell-beingの実現を組み込んでいくアプローチのなかで、人文社会科学と技術開発との接点を見いだしていく。

特徴・独自性
  • 人間中心的デザインが言われて久しいですが、何が人間中心的であるのか、研究開発によってどのような社会が予想され、また厄介な(倫理的、社会的、技術的)問題が生じるのかはそれほど明らかではありません。人工物や人工物を介した人や世界との関わりのあり方について哲学や倫理学の視点を用いながら研究を進めています。
実用化イメージ

理論立てて効率的に正解を求める工学的思考とともに、現在は答えのない課題に対応し、既存の概念に囚われない思考が求められています。一歩先のことを考えるような協働関係が築ければ成果が出せると思います。

研究者

大学院文学研究科

直江 清隆  

Kiyotaka Naoe

次世代流動実験研究センター 低乱風洞実験施設

前の画像
次の画像
概要

最大風速80m/s、乱れ強さが0.02%以下と極めて低い世界トップレベルの低乱熱伝達風洞を中心に、計測技術開発などに小回りの利く小型低乱風洞、風切り音など風によって発生する騒音の計測に用いられる小型低騒音風洞、様々な流れに対応した吹出式風洞からなる低速風洞群から構成されています。

従来技術との比較

磁力支持天秤装置をはじめ、様々な計測技術と国内有数の風洞を共同研究の有無に関わらずどなたでもご利用できます。また、利用相談、試験の支援をはじめ、風洞利用経験のない利用者へのサポートも行っています。

特徴・独自性
  • 本施設は以下のような特徴を持ちます。
  • ①低乱風洞実験施設:1975年3月に設置された最大風速80m/s、乱れ強さが0.02% 以下と極めて低い世界トップレベルの低乱熱伝達風洞を中心に、計測技術開発などに小回りの利く小型低乱風洞、風切り音など風によって発生する騒音の計測に用いられる小型低騒音風洞、様々な流れに対応した吹出式風洞からなる低速風洞群から構成されています。層流から乱流への流れの遷移と呼ばれる学術的な基礎研究から、様々な企業の製品開発まで科学技術発展に貢献して行きます。
  • ②支持装置の影響がないリアルな空気力測定:通常の風洞試験では模型を支える支持部材が必要となりますが、磁力支持天秤装置は、測定部に磁場を与えることで、永久磁石を内装した模型を空中に保持し、同時に力も計測できる天秤機能を備えた画期的な装置です。磁場を制御することにより、気流中で様々な運動をしている模型周りの流れを計測することも可能です。世界最大(2025年2月現在)となる測定部1m の磁力支持天秤装置が低乱風洞実験施設に整備され、流体科学研究所では、3基の磁力支持天秤装置を所有しています。本装置も風洞と同様に産業界へ施設共用しており、一般利用可能な世界唯一の装置です。
実用化イメージ

本施設は、共同研究の実施有無に関わらずどなたでもご利用できます。また、リエゾン室では利用相談、試験の支援をはじめ、風洞利用経験のない利用者へのサポートも行っています。

研究者

流体科学研究所

永井 大樹  

Hiroki Nagai

次世代流動実験研究センター衝撃波関連施設(弾道飛行装置)

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 衝撃波関連施設は衝撃波現象をはじめとする音速を超える超音速の流れに関する実験研究が可能な実験施設です。施設に設置してある主の装置である弾道飛行装置は、静止気体中へ高速で飛翔体を射出する装置です。流体科学研究所に2002年に設置された本装置は、飛翔体射出速度が100m/s の亜音速から最高6km/s の極超音速領域までの広い速度範囲であり、世界最高性能の装置です。大型の試験部に様々な気体、水試験槽の導入、大型試験片が設置可能で、高速自由飛行、高速衝突実験が可能であり、航空宇宙、材料開発、地球物理分野をはじめとする様々な理工学分野における基礎・応用実験が行えます。
実用化イメージ

流体科学研究所における共用(外部利用可)の超音速実験研究に関わる施設の設備であり、高速飛翔体まわりの流れの計測から、高速衝突による材料物性の計測まで、幅広い分野でご利用いただけます。

研究者

流体科学研究所

永井 大樹  

Hiroki Nagai

材料の微視的空間配置を精密制御する微粒子集積プロセスの開発

前の画像
次の画像
特徴・独自性
  • 異種材料を複合化した材料は、構成する材料の複合化状態によって、発現機能が大きく異なる。粒径や形状を制御して微粒子を合成できる技術と、合成した微粒子を設計通りに集積させる技術の融合によって実現する「ビルディングブロック工学」では、構成材料の3次元的な空間配置をメゾスコピックスケールで精密に制御することができ、従来の材料開発では得られなかった優れた機能の発現(相乗効果)や、新たな機能の発見も期待できる材料創製プロセスである。
実用化イメージ

触媒(光触媒も含む)や分離カラムなどの化学関連プロセスのみならず、薬物送達システムや診断薬など医薬関連、コンデンサーや電池などの電子材料関連、屈折率制御材料やセンサーなど光学材料関連分野への用途展開が見込まれる。

研究者

大学院工学研究科

長尾 大輔  

Daisuke Nagao

生体信号の解析と視覚化

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 多彩なセンサーの開発やICT技術の発展により、膨大な生体信号を記録・保存することが可能になってきました。我々は、その信号の病気の診断や健康の増進への利活用を目指し、様々な信号処理方法を研究しています。例えば、妊娠中の母親の腹部に張り付けた電極から子宮内胎児の心電図を高精度に抽出するアルゴリズムや、多種の生体信号の時間的関係から自律神経系などの状態を推定し、可視化するアルゴリズム等の開発を行っています。
実用化イメージ

以下のような社会実装への応用が期待されます。1生体信号の解析・可視化・診断システム2自動車運転手や各種システムオペレータの集中度や眠気のモニタリング・評価3生体リズムの特性を考慮した就労スケジューリング等へ活用可能性があります。

研究者

未踏スケールデータアナリティクスセンター

中尾 光之  

Mitsuyuki Nakao

脂質の酸化原因を明らかにできる新たな手法を開発

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 私たちの身体を構成する脂質が何らかの原因で酸化され、過酸化脂質が生じると、病気の要因になると考えられています。故に、どのような酸化反応(炎症やラジカル酸化)が進んでいるのかを知ることは重要で、私たちは過酸化脂質の構造を質量分析で詳細に解析することで、酸化反応の種類の見極めを達成しました。つまり、その種類に応じた適切な抗酸化物質を選択すれば、効果的に酸化を抑制できると期待されます。
実用化イメージ

現在、病気予防を目的に、様々な抗酸化食品が出ていますが、私たちの方法を活用することにより、作用メカニズムが明確な確固たる抗酸化食品の創成に繋がると期待されます。

研究者

大学院農学研究科

仲川 清隆  

Kiyotaka Nakagawa

ナノインプリントリソグラフィによる先進光機能材料のナノファブリケーション

前の画像
次の画像
特徴・独自性
  • ナノインプリント技術は、パターンサイズとデバイス面積を広範囲にカバーでき、産業界に向いた量産性に優れるナノファブリケーション法として注目されています。当研究グループは、単分子膜工学を推進し、界面機能分子制御の学理の追求と実学応用を進めています。離型分子層、密着分子層、偏在分子層を設計した光硬化性樹脂を研究し、ナノインプリントリソグラフィによる半導体、金属、無機酸化物の超微細加工に挑戦しています。
実用化イメージ

透明導電膜、光導波路、メタマテリアル等の先進光機能材料に関する研究成果を発表しました。材料、機械、マスク、デバイスメーカーと連携し、日本のものづくりの強化に貢献します。

研究者

多元物質科学研究所

中川 勝  

Masaru Nakagawa

型の線幅よりも微細な金属配線パターンの作製が可能!

概要

湿式エッチングでサブマイクロ線幅の金属配線付き基板を作製する方法
https://www.t-technoarch.co.jp/data/anken/T11-050.pdf

従来技術との比較

従来のフォトレジストマスクをウエットエッチングに用いた場合、金属配線幅は約10μmが下限でした。エッチング耐性に優れたレジストの熱ナノインプリント成形で、線幅0.1μmの金属配線の作製に成功しました。

特徴・独自性
  • 金・銀・銅・クロムなどのウエットエッチング加工が可能です
  • 金属と有機レジストを化学結合を介してつなぐ分子接着剤を用いています
  • サイドエッチングによる狭線化が可能なため、マイクロサイズの金属線幅をサブミクロンサイズまで縮小することが可能です
実用化イメージ

透明導電パネル・磁気シールドフィルム・帯電防止シートなどへの利用が考えられます。ウエットエッチング方式での加工なので、ロールtoロール製法にも対応が期待できます。

研究者

多元物質科学研究所

中川 勝  

Masaru Nakagawa

押し込み弾性率8.4 GPa!原版モールドの複製や欠陥検査を安価に実現

概要

ポリイミドより強靭な樹脂モールド
https://www.t-technoarch.co.jp/data/anken/T11-053.pdf

従来技術との比較

無機ナノ粒子が高含有率で存在するためシランカップリング剤による表面処理により、繰り返し離型が可能な離型層を付与することができます。有機無機ハイブリッド化により、高強度と高耐久性を実現しました。

特徴・独自性
  • ・極細の45nmのライン-アンド-スペースパターンの繰返し転写が行えます。
  • ・室温での光ナノインプリント成形にて、モールドを作製することができます。
実用化イメージ

ナノ構造オプティクス、平面レンズなどの光学用途をはじめ、様々な光学・電気デバイスの材料加工を行うための成形型としての活躍が期待されます。

研究者

多元物質科学研究所

中川 勝  

Masaru Nakagawa

nm~µmサイズが混在しパターンの粗密がある構造体を精密に製造可能!

概要

モールドエッジにバリが発生せず、均一な残膜が得られる光ナノインプリント方法
https://www.t-technoarch.co.jp/data/anken/T19-159.pdf

従来技術との比較

スピン塗布膜への光型成形では、モールド(型)の側壁の汚染が繰り返し利用を妨げます。所定量の液量を印刷液滴の配置数で規定できるので、モールド外周部への光硬化性液体の回り込みを防ぐことができます。

特徴・独自性
  • サブピコリットルの定形液滴を印刷配置できる孔版印刷です
  • 孔版印刷の版はレーザー加工で作製するため従来のような印刷欠陥がありません
  • 膜厚10nmから光硬化膜を所定位置に形成できます
  • 印刷配置を制御できるので、型表面にあるパターン密度の粗密に対応することができます
実用化イメージ

ナノ構造オプティクス、平面レンズ、細胞培養シート、など表面への樹脂ナノパターンの付与、樹脂マスクを利用したリソグラフィ加工に用いることができます

研究者

多元物質科学研究所

中川 勝  

Masaru Nakagawa