アルファベットのキーワード 86ワード

S

Speech recognition

音声・音楽をターゲットとした信号処理・情報処理

前の画像
次の画像
特徴・独自性
  • 音を中心としたさまざまな情報処理の研究を行っています。音声認識関連では、これまでに、音声認識の高精度化、音声によるロボットとの対話システムなどの研究を行ってきました。特に対話システムでは、手軽に作成できて柔軟な対話システムの開発、画像も併用したマルチモーダル対話システムなどを研究しています。また、これを応用し、外国語のスピーキング教育のための学習支援システムの技術を開発してきています。音声以外の一般音認識として、環境内での異常音の検出の研究を行っています。音声・音楽の符号化関連の研究としては、電話音声やMP3 符号化音声への情報埋め込みの研究、またこれらの音信号をインターネットでストリーミング配信する時のパケットロス耐性を向上させる研究、補助情報を用いて音楽信号の操作を行う研究などを行ってきています。音楽情報処理の研究としては、ハミング音声を使った音楽情報検索の研究や、カラオケをターゲットとした歌声の自動評価の研究などを行っています。
  • これらに限らず、信号時系列(音信号、センサーデータなど)や記号系列(自然言語、シンボル系列)のモデル化、認識、圧縮、データマイニングなどの技術を持っています。
  • これらの技術を必要とする企業に対して、技術指導および共同研究を行う用意があります。
実用化イメージ

研究者

大学院工学研究科

伊藤 彰則  

Akinori Ito

Spintronics

第一原理計算に基づく新材料・素子機能の理論設計

前の画像
次の画像
特徴・独自性
  • 超高密度磁気記録用読出しヘッドや不揮発性スピンメモリなど高機能なスピントロニクス素子を実現するため、高スピン偏極材料を用いた磁気抵抗素子における電気伝導に関する理論研究に取り組んでいます。また、磁化の熱ゆらぎに対する耐久性向上を目指して、垂直磁気材料を用いた磁気抵抗素子の研究にも着手しています。強磁性体と酸化物の界面での結晶構造を理論的に設計して、磁気抵抗性能を向上させるための指針を得ることに成功しています。経験的パラメタを必要としない第一原理計算手法は、スピントロニクス分野に限らず、多様な材料研究・開発の場において重要な役割を果たすものと確信しています。共同研究のご要望がございましたら、ご一報ください。
実用化イメージ

研究者

電気通信研究所

白井 正文  

Masafumi Shirai

Statistical Mechanics

全てを最適化する Optimal Society

前の画像
次の画像
特徴・独自性
  • 量子アニーリングと呼ばれる最適化技術を世界でいち早く産業化に向けて、その限界を突破する基礎技術、複数の企業との応用可能性の探索に取り掛かっている。
  • その手法の優位性は、一度最適化したい目標を描くコスト関数を定式化するだけで利用できる点だが、我々はさらに最適化しやすい形、学習による逐次最適化、ブラックボックス最適化など、手法にとどまらない展開をしている。
  • 特に自動運転、工場内の物流、災害時の避難誘導へ応用展開中である。
実用化イメージ

各種車両の自動運転、災害時の避難経路誘導などの経路探索問題、工程スケジューリングや多大な組合せ問題への応用。
各業界における組合せ最適化問題への課題解決方法を提供可能。
( 交通・流通、製造、材料、創薬等)

研究者

大学院情報科学研究科

大関 真之  

Masayuki Ohzeki

superconductivity

分子性有機物質の新電子物性開拓

前の画像
次の画像
特徴・独自性
  • 有機分子の集積によって構成されている分子性伝導体を中心に研究を進めています。分子で構成されている有機物質の特徴は“やわらかい”ことです。この特長から、近年、有機ELデバイスなどの軽量で“曲がる”エレクトロニクス材料として注目されています。当研究室では、このような分子性有機物質の基礎的物性( 金属- 超伝導- 絶縁体) の解明、新物性の開拓を目指しています。
  • 分子性有機物質は、無機物質と比べて“やわらかく”大きく広がった分子軌道や電荷の分布、また分子自身の持つ構造自由度などのために、電荷- スピン- 分子格子- 分子内結合の間にゆるやかで大きな自由度を有しています。このナノ分子サイズの“やわらかい”複合的自由度と強く関係している超伝導から絶縁体までの多彩な電子状態がバルクな物性として現れます。このような分子性物質の特長をフルに活かして、電子物性物理の重要で興味ある問題にチャレンジしています。 このような研究に興味のある企業への学術指導を行なう用意があります。
実用化イメージ

研究者

金属材料研究所

佐々木 孝彦  

Takahiko Sasaki

T

TlBr

化合物半導体を用いた放射線検出器の開発

前の画像
次の画像
特徴・独自性
  • 材料純化、結晶成長、結晶加工、電極形成、検出器製作を一貫して行い、化合物半導体を用いた放射線検出器の開発を行っている。特に化合物半導体の一つである臭化タリウム(TlBr)に着目し研究を行っている。TlBr検出器は非常に高い検出効率を持ち、PET やSPECT 等の核医学診断装置やガンマ線CT、産業用X線CT、コンプトンカメラ等への応用が可能である。
実用化イメージ

化合物半導体成長技術はシンチレーション結晶育成、X線フラットパネルセンサー用直接変換膜製作へ応用が可能である。これらの結晶成長・検出器製作技術を産業界で活用したい企業や団体との共同研究を希望する。

研究者

大学院工学研究科

人見 啓太朗  

Keitaro Hitomi

U

ultra-realistic communication

次世代高臨場・低電力ディスプレイシステムの研究開発

前の画像
次の画像
特徴・独自性
  • 近年、高精細映像通信サービスやユビキタスネットワークの普及による情報の多様化に伴い、情報ネットワークと人との間を繋ぐヒューマンインターフェースとしてディスプレイは大容量化や高色再現といった表示の高品位化だけではなく、省電力化や高臨場感等の高機能化の実現が期待されている。当研究室では、液晶を用いた光の偏光および拡散の精密な解析・制御技術、ならびにそれに基づいた高性能ディスプレイシステムについて研究を行っており、これにより電子ブックやデジタルサイネージ等をはじめとした新しいメディアの創出、省エネルギー社会の実現に貢献することを目的としています。特に偏光の精密な解析と制御を可能とする偏光制御理論を確立すると共に、その応用として液晶分子の表面配向状態の解析および制御技術、液晶の広視野角・高速化技術、フィールドシーケンシャルカラー(色順次表示)方式を用いた超高精細ディスプレイ技術、超低消費電力反射型フルカラーディスプレイ、超大型・高品位ディスプレイなどについて研究を進めています。
  • また、インタラクティブ(双方向対話型)なコミュニケーション技術に基づいた情報社会の構築を想定した次世代高臨場感ディスプレイ技術についても研究を行っています。具体的には精密な光線方向制御に基づいた実空間裸眼立体ディスプレイおよび多視点ディスプレイに関する研究などがあります。以上のような技術をさらに進展させ、産業界で活用したい企業や団体との共同研究を希望します。
実用化イメージ

研究者

大学院工学研究科

石鍋 隆宏  

Takahiro Ishinabe