アルファベットのキーワード 171ワード
S
〈Screening〉
微生物ゲノム情報を用いた抗菌剤創造薬システム特徴・独自性農業・医療分野の動植物感染菌対策に必要な抗菌剤の開発においては、効率的創薬手法の確立が求められており、我々は微生物ゲノム科学を活用して連続的に新規抗菌剤を創出する新技術体系を確立した。新規創薬パイプラインでは、様々な基準抗真菌剤に対する糸状菌の網羅的な転写応答プロファイル解析から、創薬標的候補遺伝子の機能解析と候補化合物の系統的分別探索に有効な、1)細胞システム毎(エネルギー系、細胞膜生合成系、細胞壁系、細胞骨格系等、シグナル伝達系)のレポーターアッセイ系、2)化合物転写応答-表現型データベースによる統計解析を組み合わせた新剤評価系を構築して産業運用している。現在、化合物探索の共同開発が可能な状態にある。 |
〈Self-Organizing Map〉
次世代設計理論・多目的設計探査−設計空間の見える化−特徴・独自性我々のグループでは「多目的設計探査(MODE)」と名付けて、多目的最適化によるトレードオフ情報の提示により、設計空間の構造を俯瞰的に「可視化」する新しい設計手法を研究している。設計図は形を「可視化」するものだが、本手法は機能の「可視化」を試みるものである。「可視化」=「設計空間の見える化」により機能のトレードオフや設計変数の影響を見て取ることができるようになり、設計における意思決定に大いに役立つと期待される。優れた設計をするためには、CAE(Computer AidedEngineering)技術を利用した「見える化」の一層の活用が重要である。 産学連携の可能性(想定される用途・業界)流体解析、構造解析などの特定分野でCAE 技術の活用が可能。 |
〈Si〉
外場印加により固液界面のエネルギー状態を制御した新しい結晶成長特徴・独自性我々は、結晶成長過程における界面現象と育成された結晶の特性の関係を明らかにするといった立場から、主として融液からのバルク結晶の成長に取り組んでいます。特に、界面に電場を印加することにより結晶と融液の間に電気二重層という極薄領域を形成しナノメータスケールで結晶育成を制御しています。電場印加による具体的な結晶作製研究例として、 |
〈SiCパワーデバイス〉
電子デバイスの高性能・高信頼化のための配線材料と形成プロセスの開発特徴・独自性半導体デバイスからなる電子製品は、半導体自体はもとより、半導体に接続する金属配線があって製品として動作する。金属配線に求められる課題は、半導体材料との良好な電気的コンタクト、相互拡散の防止、良好な密着性、および配線材料の低電気抵抗、耐腐食性、プロセス耐性などがある。本研究室では、種々のデバイスのニーズにあった配線材料の開発ならびにコストパフォーマンスを追求したプロセス技術を開発することによって、高性能かつ高信頼性の先端デバイス開発に貢献している。 産学連携の可能性(想定される用途・業界)Si半導体多層配線において拡散バリア層を自己形成するCu合金配線、IGZO 酸化物半導体に対して熱反応によるキャリアドーピングを行えるCu 合金配線、SiC パワー半導体に対して優れた熱・機械的信頼性と良好なコンタクト特性を示すNb 合金配線、タッチパネル用途などのITO透明導電膜に対するCu 合金配線、太陽電池におけるCu ペースト配線、などがある。 大学院工学研究科・工学部 知能デバイス材料学専攻 インターコネクト・アドバンスト・テクノロジー共同研究講座
小池 淳一 教授 Ph. D.
KOIKE Junichi Professor
|
〈SiC多孔質セラミックス〉
ナトリウムフラックス法を用いて多孔質SiCセラミックスを作製する特徴・独自性炭化ケイ素(SiC) の合成は、一般に1200 ℃ を超える高温条件下で行われる。研究者らは、Si+C →SiC の反応において、ナトリウム(Na)を利用することで、β型立方晶系のSiCが700℃で合成できることを見出した。この合成法で、数ナノメートルの粒径を有する微粉末や、原料圧粉成型体の形状を保持した多孔体、図に示すような生体由来の組織を維持した多孔体が得られた。 産学連携の可能性(想定される用途・業界)作製されるSiC 多孔体は、高温ガスまたは融液のフィルターや触媒担体、軽量構造材料などに利用できる可能性がある。 |
〈Si半導体〉
電子デバイスの高性能・高信頼化のための配線材料と形成プロセスの開発特徴・独自性半導体デバイスからなる電子製品は、半導体自体はもとより、半導体に接続する金属配線があって製品として動作する。金属配線に求められる課題は、半導体材料との良好な電気的コンタクト、相互拡散の防止、良好な密着性、および配線材料の低電気抵抗、耐腐食性、プロセス耐性などがある。本研究室では、種々のデバイスのニーズにあった配線材料の開発ならびにコストパフォーマンスを追求したプロセス技術を開発することによって、高性能かつ高信頼性の先端デバイス開発に貢献している。 産学連携の可能性(想定される用途・業界)Si半導体多層配線において拡散バリア層を自己形成するCu合金配線、IGZO 酸化物半導体に対して熱反応によるキャリアドーピングを行えるCu 合金配線、SiC パワー半導体に対して優れた熱・機械的信頼性と良好なコンタクト特性を示すNb 合金配線、タッチパネル用途などのITO透明導電膜に対するCu 合金配線、太陽電池におけるCu ペースト配線、などがある。 大学院工学研究科・工学部 知能デバイス材料学専攻 インターコネクト・アドバンスト・テクノロジー共同研究講座
小池 淳一 教授 Ph. D.
KOIKE Junichi Professor
|
〈SNS解析〉
ビッグデータの意味解析を可能にする自然言語処理技術特徴・独自性膨大な言語データを意味的に解析し必要な情報・知識を抽出する技術、抽出した情報・知識を分類・比較・要約する技術、それらを可能にする世界最速の仮説推論技術など、先進的な自然言語処理技術を研究開発しています。また、これら基盤技術をウェブやソーシャルメディアなどのビッグデータに適用し、大規模な情報・知識マイニングや信頼性の検証支援、耐災害情報処理などに応用する実践的研究も展開しています。 産学連携の可能性(想定される用途・業界)言語意味解析に基づく高度なテキストマイニングによる市場動向調査や技術動向調査、隠れたニーズやリスクの発見、社内文書の構造化・組織化による知識管理支援、対話システムなど、多様な分野・業種との連携が可能です。 |
〈SOFC〉
再生可能エネルギーの高効率利用システムの研究特徴・独自性地球規模の環境破壊やエネルギー問題を解決するためには、高効率なエネルギー利用システムの開発と共に、再生可能なクリーンエネルギー利用技術を研究する必要が有ります。我々は、太陽エネルギーや水素などの新エネルギー利用技術に関する研究に取り組んでいます。研究テーマは大きく分けて熱放射スペクトル制御を用いた、高効率な熱エネルギー利用と水素エネルギー社会の実現に向けた固体酸化物燃料電池の研究です。 産学連携の可能性(想定される用途・業界)環境調和型のエネルギーシステムにとって重要であり、今後の成長が期待される分野です。 |
セラミックスのイオン輸送を利用した燃料電池とエネルギー貯蔵特徴・独自性イオン導電性セラミックスを用いて高温で動作する固体酸化物形燃料電池は、様々な燃料を高い効率で利用することができる発電システムです。当研究室では、さらなる高性能、低コスト、高信頼性を達成するために、材料の電気化学的・機械的挙動について、基礎的・多角的な研究を行っています。また、燃料電池の逆反応を用いて、再生可能エネルギーから得た電力を水素やメタンとして貯蔵する研究も行っています。 産学連携の可能性(想定される用途・業界)学内外の研究機関や企業・団体と協力しながら、燃料電池技術の商用化に向けて取り組んでいます。また、機能性材料のイオン輸送、界面反応、機械的特性の評価・解析技術を通して、新技術の開発にも貢献します。 |
〈software〉
実践的かつ経営的処方を支援する薬品決定支援システムおよびプログラムの開発特徴・独自性糖尿病における実地医療現場で実践的かつ経営的処方術を実施するための薬剤決定支援システムおよび薬剤決定支援プログラムを発明した(特許第4176438号)。 |
〈Software Defined Networking (SDN)〉
ネットワークアプリケーション制御技術特徴・独自性Software Defined Networking(SDN) やサーバ仮想化技術などに基づき、アプリケーション層からデータリンク層までを含んだ横断的アプローチを用いて、アプリケーションの要求品質に応じて適応的にネットワークリソースを確保することで、ネットワーク・コンピューティング資源利用を最適化し、インターネットアプリケーションの品質の向上を目指します。 |
〈Sparse Modeling〉
全てを最適化する Optimal Society特徴・独自性量子アニーリングと呼ばれる最適化技術を世界でいち早く産業化に向けて、その限界を突破する基礎技術、複数の企業との応用可能性の探索に取り掛かっている。 産学連携の可能性(想定される用途・業界)各種車両の自動運転、災害時の避難経路誘導などの経路探索問題、工程スケジューリングや多大な組合せ問題への応用。 |
〈SPECT〉
医工放射線情報学特徴・独自性主に核医学に関わる医用工学分野の研究を行なっています。PETやSPECTに代表される核医学検査では、さまざまな薬剤に放射性同位元素をラベルし、その薬剤の体内の動態を非侵襲的に画像化できます。非常に高い感度、定量性を持った検査です。しかし、PET/SPECTのデータは、さまざまな情報、雑音が混合しており、そこから有益な情報を引き出す必要があります。そのための、数理モデルの構築や、画像処理の研究を行なっています。 産学連携の可能性(想定される用途・業界)画像処理・データ解析ソフトウェアを医療機器メーカーに提供できます。現在、PETは創薬の分野で注目を集めています。分子イメージング技術をいかした早期薬効評価の指標としてPETを利用しようというものです。そのためのPET 評価系の構築技術を提供できます。 |
化合物半導体を用いた放射線検出器の開発特徴・独自性材料純化、結晶成長、結晶加工、電極形成、検出器製作を一貫して行い、化合物半導体を用いた放射線検出器の開発を行っている。特に化合物半導体の一つである臭化タリウム(TlBr)に着目し研究を行っている。TlBr検出器は非常に高い検出効率を持ち、PET やSPECT 等の核医学診断装置やガンマ線CT、産業用X線CT、コンプトンカメラ等への応用が可能である。 産学連携の可能性(想定される用途・業界)化合物半導体成長技術はシンチレーション結晶育成、X線フラットパネルセンサー用直接変換膜製作へ応用が可能である。これらの結晶成長・検出器製作技術を産業界で活用したい企業や団体との共同研究を希望する。 大学院工学研究科・工学部 量子エネルギー工学専攻 粒子ビーム工学講座 放射線高度利用分野
人見 啓太朗 准教授 博士(工学)
HITOMI Keitaro Associate Professor
|
〈Speech coding〉
音声・音楽をターゲットとした信号処理・情報処理特徴・独自性音を中心としたさまざまな情報処理の研究を行っています。音声認識関連では、これまでに、音声認識の高精度化、音声によるロボットとの対話システムなどの研究を行ってきました。特に対話システムでは、手軽に作成できて柔軟な対話システムの開発、画像も併用したマルチモーダル対話システムなどを研究しています。また、これを応用し、外国語のスピーキング教育のための学習支援システムの技術を開発してきています。音声以外の一般音認識として、環境内での異常音の検出の研究を行っています。音声・音楽の符号化関連の研究としては、電話音声やMP3 符号化音声への情報埋め込みの研究、またこれらの音信号をインターネットでストリーミング配信する時のパケットロス耐性を向上させる研究、補助情報を用いて音楽信号の操作を行う研究などを行ってきています。音楽情報処理の研究としては、ハミング音声を使った音楽情報検索の研究や、カラオケをターゲットとした歌声の自動評価の研究などを行っています。 |
〈Speech communication〉
音声・音楽をターゲットとした信号処理・情報処理特徴・独自性音を中心としたさまざまな情報処理の研究を行っています。音声認識関連では、これまでに、音声認識の高精度化、音声によるロボットとの対話システムなどの研究を行ってきました。特に対話システムでは、手軽に作成できて柔軟な対話システムの開発、画像も併用したマルチモーダル対話システムなどを研究しています。また、これを応用し、外国語のスピーキング教育のための学習支援システムの技術を開発してきています。音声以外の一般音認識として、環境内での異常音の検出の研究を行っています。音声・音楽の符号化関連の研究としては、電話音声やMP3 符号化音声への情報埋め込みの研究、またこれらの音信号をインターネットでストリーミング配信する時のパケットロス耐性を向上させる研究、補助情報を用いて音楽信号の操作を行う研究などを行ってきています。音楽情報処理の研究としては、ハミング音声を使った音楽情報検索の研究や、カラオケをターゲットとした歌声の自動評価の研究などを行っています。 |
〈Speech processing〉
音声・音楽をターゲットとした信号処理・情報処理特徴・独自性音を中心としたさまざまな情報処理の研究を行っています。音声認識関連では、これまでに、音声認識の高精度化、音声によるロボットとの対話システムなどの研究を行ってきました。特に対話システムでは、手軽に作成できて柔軟な対話システムの開発、画像も併用したマルチモーダル対話システムなどを研究しています。また、これを応用し、外国語のスピーキング教育のための学習支援システムの技術を開発してきています。音声以外の一般音認識として、環境内での異常音の検出の研究を行っています。音声・音楽の符号化関連の研究としては、電話音声やMP3 符号化音声への情報埋め込みの研究、またこれらの音信号をインターネットでストリーミング配信する時のパケットロス耐性を向上させる研究、補助情報を用いて音楽信号の操作を行う研究などを行ってきています。音楽情報処理の研究としては、ハミング音声を使った音楽情報検索の研究や、カラオケをターゲットとした歌声の自動評価の研究などを行っています。 |
〈Speech recognition〉
音声・音楽をターゲットとした信号処理・情報処理特徴・独自性音を中心としたさまざまな情報処理の研究を行っています。音声認識関連では、これまでに、音声認識の高精度化、音声によるロボットとの対話システムなどの研究を行ってきました。特に対話システムでは、手軽に作成できて柔軟な対話システムの開発、画像も併用したマルチモーダル対話システムなどを研究しています。また、これを応用し、外国語のスピーキング教育のための学習支援システムの技術を開発してきています。音声以外の一般音認識として、環境内での異常音の検出の研究を行っています。音声・音楽の符号化関連の研究としては、電話音声やMP3 符号化音声への情報埋め込みの研究、またこれらの音信号をインターネットでストリーミング配信する時のパケットロス耐性を向上させる研究、補助情報を用いて音楽信号の操作を行う研究などを行ってきています。音楽情報処理の研究としては、ハミング音声を使った音楽情報検索の研究や、カラオケをターゲットとした歌声の自動評価の研究などを行っています。 |
〈Spintronics〉
第一原理計算に基づく新材料・素子機能の理論設計特徴・独自性超高密度磁気記録用読出しヘッドや不揮発性スピンメモリなど高機能なスピントロニクス素子を実現するため、高スピン偏極材料を用いた磁気抵抗素子における電気伝導に関する理論研究に取り組んでいます。また、磁化の熱ゆらぎに対する耐久性向上を目指して、垂直磁気材料を用いた磁気抵抗素子の研究にも着手しています。強磁性体と酸化物の界面での結晶構造を理論的に設計して、磁気抵抗性能を向上させるための指針を得ることに成功しています。経験的パラメタを必要としない第一原理計算手法は、スピントロニクス分野に限らず、多様な材料研究・開発の場において重要な役割を果たすものと確信しています。共同研究のご要望がございましたら、ご一報ください。 |
〈Statistical Mechanics〉
全てを最適化する Optimal Society特徴・独自性量子アニーリングと呼ばれる最適化技術を世界でいち早く産業化に向けて、その限界を突破する基礎技術、複数の企業との応用可能性の探索に取り掛かっている。 産学連携の可能性(想定される用途・業界)各種車両の自動運転、災害時の避難経路誘導などの経路探索問題、工程スケジューリングや多大な組合せ問題への応用。 |