• Top
  • Research Themes

Research Themes - 221 Result(s)

 S

Suppression of Intergranular Degradation of Polycrystalline Materials by Grain Boundary Engineering

NEXT
PREV
特徴・独自性
  • Intergranular degradation often results in decreased lifetime, reliability and economical efficiency of polycrystalline materials. In spite of persistent efforts to prevent such degradation, its complete suppression has not yet been achieved. Grain boundary studies have revealed that coincidence-site-lattice (CSL) boundaries have stronger resistance to intergranular degradations than random boundaries. The concept of ‘grain boundary design and control' has been refined as grain boundary engineering (GBE). GBEed materials which are characterized by high frequencies of CSL boundaries are resistant to intergranular degradations. Our group has achieved very high frequencies of CSL boundaries in commercial stainless steels by GBE. GBEed stainless steels showed significantly stronger resistance to intergranular corrosion (see Figs. 1 and 2), weld-decay, knife-line attack, stress corrosion cracking, liquid-metal embrittlement, radiation damage, etc. and much longer creep life (see Fig. 3) than the unGBEed ones.
実用化イメージ

By using this GBE processing, we expect to conduct effective collaborative research in related fields.

Researchers

Graduate School of Engineering

Yutaka Sato

Synthesis and material characterization of new organic ferroelectric materials, molecular semiconductors, molecular magnets.

NEXT
PREV
特徴・独自性
  • Multifunctional molecular-assemblies and hybrid organic - inorganic materials are examined from the viewpoint of structural freedom of organic molecules. The spin and electronic states of molecular-assemblies are designed in terms of electrical conductivity, magnetism, and ferroelectricity. Diverse molecular assemblies from single crystal, plastic crystal, liquid crystal, gel, to Langmuir-Blodgett film are our research targets, which were hybridized with inorganic gigantic clusters and metal nanoparticles. We are prepared to provide academic consultations to companies interested in our research.
実用化イメージ

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Tomoyuki Akutagawa

Synthesis of Biologically Active Cyclodepsipeptide Natural Products

NEXT
PREV
特徴・独自性
  • Cyclodepsipeptide natural products include optically active hydroxy acids as well as various unnatural amino acids and exhibit a variety of biological activity depending on the peptide sequence, chirality, and selection of the hydroxy acids. Structure-activity relationships of a synthetic library of natural products could give us significant information of not only biologically important moieties but also intact positions in the biologically active small molecules. On the basis of the former information, more potent compounds and/or peptide mimetics can be designed. The latter information can also be important for making a molecular probe that is used for exploration of a target molecule.
実用化イメージ

We study for combinatorial synthesis of natural product analogues using solid-phase.

Researchers

Graduate School of Pharmaceutical Sciences

Takayuki Doi

 T

Testing sperm samples from fathers can predict the incidence of autism spectrum disorder in their children

NEXT
PREV
概要

Autism spectrum markers:
Measuring histone modifications in sperm may be able to predict the risk of neurodevelopmental disorders in the next generation.

従来技術との比較

It is known that the highest risks with regard to the development of developmental disorders in children are ageing and premature birth in both parents, and it has been repeatedly epidemiologically reported that the risk is higher in ageing fathers than in ageing mothers among the parents. Conventionally, sperm are only examined under a microscope to check sperm count, morphology and motility, but not at the molecular level. The present invention is an innovative method that focuses on epigenetic molecular markers.

特徴・独自性
  • While birthrates are falling rapidly, developmental disorders are on the rise
  • Focus on plastic epigenetic molecules as a successional effect of paternal ageing.
  • Sperm testing can be performed non-invasively.
  • Suitable as a quality check for sperm donors etc.
実用化イメージ

The combination of sperm histone modifications and relevant epigenetic factors (DNA methylation, microRNAs) in combination with the sperm panel test will enable highly accurate sperm quality testing.

Researchers

Graduate School of Medicine

Noriko Osumi

The Construction of a Decentralized Energy Production System Using Small Methane Fermentation Systems That Utilize Exhaust Heat or Hot Springs and a Local Circulation System

NEXT
PREV
特徴・独自性
  • In this project, we reduce the costs of energy production via anaerobic digestion by utilizing exhaust heat from a factory, which resulted in a positive energy balance, although the methane fermentation system tested was on a small scale.
  • Using small-scale methane fermentation with a positive energy balance, the initial investment is small, enabling a company to invest in, and install, such a system. This would decentralize energy production within an area. Moreover, this system not only produces energy, but is a basis for resource recycling.
実用化イメージ

Food factory, hotel, restaurant, where food garbage or organic waste was produced much.

Researchers

Graduate School of Agricultural Science

Chika Tada

The intersection between the skeleton and metabolism

NEXT
PREV
概要

Beyond the classic function of bone, bone cells have been shown to regulate whole energy metabolism through bone-derived factors (osteokines). However, much of the research done to elucidate the pathophysiology of metabolic dysfuntion uses the classical approach of studying organs obviously implicated in energy metabolism. When Looking at the importance of skeletal integrity through the lens of evolution, we find that bone served a survival function. Humans had to consistently be mobile to look for food and shelter. Furthering this logic reveals that bone and energy metabolism are entwined. Therefore, this project aims to 1. identify bone factors that are associated with metabolic conditions and 2. to bridge our knowledge of the skeletal system represented by its cell types and our understanding of energy metabolism of the organism into one integrated subject.

従来技術との比較

Our research project offers a transformative advantage over conventional approaches by thinking with the end in mind (i.e translational potential) . We employ a multi-omics approach that goes beyond the conventional focus on single layers of biological information that will deepen our understanding of metbaolic diseases and accelerates identifying novel biomarkers and therapeutic targets.

特徴・独自性
  • Interdisciplinary approach
  • Multi-omics integration
  • Translatioal potential
実用化イメージ

Our research offers potential for early diagnostics, novel biomarkers, and personalized therapeutic approaches for conditions like diabetes, osteoporosis, and diabetic osteoporosis. Our work fosters interdisciplinary collaboration and inspires future translational research and RnD with industrial partners.
This work promotes public awareness of the importance of bone health and ultimately aims to deliver tangible societal benefits.

Researchers

Frontier Research Institute for Interdisciplinary Sciences

Aseel Mahmoud Suleiman Marahleh

The Novel Ultrasound Irradiation Device

NEXT
PREV
特徴・独自性
  • Dr. Katsunori Nonogaki has developed the novel ultrasound irradiation device, which can improve the autonomic nervous system activity and peripheral circulation. In addition, the ultrasoud device can improve hypertension and hyperglycemia within 20 min in subjects with drug-resistant hypertension and diabetes. Our initial device was approved in Japan (226AIBZX00028000). This device will be avaliable for the treatment of 1) muscle pain, 2) the autonomic neural dysfunction and stress-related disorders, 3) hypertention, and 4) diabetes. Moreover, the device will be usefull for your healthy life and aging care.
実用化イメージ

Our aims are to export the device internationally. We seek the investment and international business partners.

Researchers

Research Center for Accelerator and Radioisotope Science

Katsunori Nonogaki

Theoretical Design of New Materials and Device Functionality based on First-principles Calculations

NEXT
PREV
特徴・独自性
  • We are doing theoretical research on electrical conductivity in magnetoresistive devices using highly spin-polarized materials. The aim is to achieve very functional spintronics devices such as read-out heads for ultrahigh-density magnetic recording and non-volatile spin memories. We also investigate magnetoresistive devices using perpendicularly magnetized materials to ensure endurance against thermal fluctuations of the magnetization. We successfully achieve a guideline for improvement of the magnetoresistive performance by designing the crystal structure at the interface between ferromagnets and oxides theoretically.
  • We believe that first-principles calculations, which need no empirical parameter, play a very important role in research and development of various materials. Please contact us if you want to collaborate with us.
実用化イメージ

Researchers

Research Institute of Electrical Communication

Masafumi Shirai

Theory and practice of energy design to drive decarbonization

概要

An indispensable function for decarbonized driving is energy data analysis, an energy car navigation system with both high spatial and temporal resolution. Higher spatial resolution facilitates the recharging and discharging of electric cars and inter-regional energy exchange. With the addition of up-to-the-minute energy data with high temporal resolution, it is possible to rationally and optimally combine the fluctuating output of renewable energy with the consumers. Data analysis, system design, and operation will lead to a carbon-neutral society.

従来技術との比較

Japan's first regional energy supply and demand database has been developed, allowing for detailed design of sustainable and resilient regional energy infrastructure layout and operation based on analysis of the current energy status of cities, towns, and villages nationwide.

特徴・独自性
  • Research experience as a Fulbright Scholar in the U.S. and familiarity with examples of social implementation in Europe.
  • Data-driven innovation research approach based on a vast regional energy supply and demand database.
  • Emphasis on regional fieldwork as a social entrepreneur solving social issues.
実用化イメージ

Putting Theory into Practice. Helping to build sustainable energy systems for new community development. Including the background of the local community, listening to the opinions of the residents, and guiding them to discussions that are relevant to today's issues. Thinking globally and acting within the community.

Researchers

Graduate School of Engineering

Toshihiko Nakata

Transport Control of Semiconductor Quantum Structures and Highly Sensitive NMR

NEXT
PREV
特徴・独自性
  • Highly-sensitive NMR technique has been developed by manipulation polarization of nuclear spins via control of transport characteristics in GaAs and InSb quantum structures. This highly-sensitive NMR can be applied to two-dimensional and nanostructures. Furthermore, ideal gate controllability has been demonstrated in InSb quantum structures with Al2 O3 dielectrics. More importantly, the concept of generalized coherence time was introduced, where noise characteristics felt by nuclear spins can be measured including their frequency dependence. This concept will bring about a change in all nuclear-spin related measurements.
実用化イメージ

Next generation InSb devices based on good gate controllability. Various nuclear-spin based measurements and NMR utilizing the concept of generalized coherence time. Highly-sensitive NMR is now important for fundamental physics studies. In the future, it will contribute to quantum information processing.

Researchers

Center for Science and Innovation in Spintronics

Yoshiro Hirayama

 U

Understanding and application of thermoacoustic phenomena

NEXT
PREV
特徴・独自性
  • Acoustic oscillations of a gas column in narrow flow channels can lead to various thermal phenomena such as production and amplification of acoustic power from heat and generation of low temperatures. We aim at understanding these thermoacoustic phenomena from experimental point of view, and developing heat engines that can operate without any moving parts like solid pistons.
実用化イメージ

Acoustic prime mover can use various heat sources like industrial waste heat and sunlight. Acoustic cooler is a Helium-gas based heat pump that needs no Freon gases as a coolant.

Researchers

Graduate School of Engineering

Tetsushi Biwa

Understanding Biological Control Systems and its Application to Development of Life-Like Resilient Systems

NEXT
PREV
特徴・独自性
  • In contrast to artificial systems, living organisms exhibit astoundingly adaptive and resilient properties. One of the central research goals in our laboratory is to endow artificial systems with similar properties. To this end, we are particularly focusing on the concept of autonomous decentralized control. We have so far successfully developed various types of robots on the basis of decentralized control, including amoeboid robots, snake-like robots, legged robots etc., in collaboration with mathematicians and biologists.
実用化イメージ

Development of adaptive autonomous robotic system, Control of Large D.O.F. system

Researchers

Research Institute of Electrical Communication

Akio Ishiguro

Universal Design in Language Use

NEXT
PREV
概要

My current research topic is "universal design in language use," with special reference to order in language and thought. In particular, I am investigating (1) similarities and differences in neural processing of languages with different basic word orders, (2) to what extent the order in non-verbal thought is affected by the order in language, and vice versa, and (3) what is the optimal order in human language and human thought, if any.

従来技術との比較

Many studies have reported that subject-object (SO) word order, where the subject (S) precedes the object (O), tends to have lower processing costs and is preferred by native speakers compared to object-subject (OS) word order. However, traditional studies have primarily focused on SO languages, such as Japanese and English, where SO word order is the grammatical default. As a result, it remains unclear whether the preference for SO word order reflects the basic word order of individual languages or more universal cognitive characteristics of humans.

特徴・独自性
  • To address this, we are conducting research on the cognitive processing of minority languages that use object-subject (OS) word order as their basic word order—specifically Kaqchikel and Truku, which have not been studied before. This research focuses on the relationship between “word order in language” and “order of thought.” The findings are then compared to the cognitive processing of Japanese and English.
  • For this purpose, experimental equipment is brought to the speakers’ regions (Guatemala and Taiwan) to conduct a variety of investigations and experiments, including behavioral experiments, eye-tracking, and brain function measurements. Additionally, for experiments requiring large, non-portable equipment such as MRI scanners, the speakers are invited to Japan for the studies.
実用化イメージ

Although I am conducting basic research, I believe it helps develop (1) effective language teaching/learning methods, (2) rehabilitation programs for aphasia, (3) dynamic preservation of endangered languages/dialects, and so on.

Researchers

Graduate School of Arts and Letters

Masatoshi Koizumi

 V

Vacuum Engineering of Solid-Liquid Interfaces and its Process Applications

NEXT
PREV
特徴・独自性
  • We challenge to fabricate in vacuum-stabilized micro/nano-scale liquid materials, explore their novel chemicophysical properties and develop their vacuum processing applications. The representative examples include ultra thin film ionic liquid on the nanometer scale and advanced vapor-liquid-solid growth (VLS) of inorganic/organic materials, such as 4H- and 3C-SiC films, single crystal pentacene and a porous polymer film of plolythiophene.
実用化イメージ

Our research outcomes will contribute to the following research and development:
1) a next-generation semiconductor process with the merits of the wet process
2) a new purification process of organic semiconductors, by which some part of inorganic semiconductor materials would be replaced in response to the present world-wide shortage of semiconductors.

In addition, the consultation of how to use our ionic liquid-assisted vapor growth method in attempt to obtain organic single crystals is welcome.

Researchers

Graduate School of Engineering

Yuji Matsumoto

Visual Computing with Secure ICT in the Big Data Era

NEXT
PREV
特徴・独自性
  • Our study focuses on sensing, processing, recognition, understanding, and analysis of enormous visual data collected in real-world environments. We have invented a set of advanced techniques of sub-pixel image analysis using phase-based image matching. Potential applications include personal recognition using various biometric traits (e.g., face, fingerprint, palm print, finger knuckle print, iris, and medical radiographs), machine vision, multi-view 3D reconstruction, image database search, and medical image computing. We are also studying fundamental techniques for building secure ICT infrastructure for the big data era; our research interests include tamper-resistant cryptographic processing and biometrics-based secure remote authentication.
実用化イメージ

We can provide collaboration and information exchange services for industries and other research organizations in the fields of image processing, computer vision, information security, biometrics, LSI design, and embedded system technologies. Many researchers and engineers from various companies, universities, and research institutions have visited our laboratory regardless of their technology fields. Our staff at the Intelligent Information System (IIS) Research Center will welcome potential collaborators: info@iisrc.ecei.tohoku.ac.jp

Researchers

Administrative Staff

Takafumi Aoki

Visualization of Biological Microstructure with High Frequency Ultrasound and Photoacoustic Imaging

NEXT
PREV
特徴・独自性
  • "Features"
  • High-resolution imaging of biological tissue is non-invasively obtained with high frequency ultrasound. We have developed some ultrasound microscope systems which realized the resolution of 15-micron with 100 MHz and resolution to visualize a single cell with GHz range ultrasound. Ultrasonic imaging provides not only tissue morphology but also information on tissue elasticity. Recently, we have developed a real-time three-dimensional photoacoustic imaging system for visualization of subcutaneous micro vasculature and oxygen saturation.
  • "Targeted Application(s)/Industry"
  • High frequency ultrasound and photoacoustic imaging is repeatedly and non-invasively applied for early diagnosis of atherosclerosis, skin aging and tissue metabolism. They are useful for efficacy assessment of cosmetics and pharmaceuticals. High frequency ultrasound is also applied in the industrial areas where thickness measurement of opaque film or bilayer thin coating with the precision of 0.1 micron is required.
実用化イメージ

Researchers

Graduate School of Biomedical Engineering

Yoshifumi Saijo

Visualization of Electron Motion in Matter by Means of Electron Compton Scattering

NEXT
PREV
特徴・独自性
  • Properties of matter, such as reactivity and functionality, are determined by the motion of the constituent electrons. For this reason we aim at developing new spectroscopic methods, by using electron Compton scattering, that would visualize the electron motion for stable species and most importantly the change of electron motion in transient species, which is the driving force behind any chemical reactions;
  • (1) development of molecular frame electron momentum spectroscopy for momentum-space imaging of molecular orbitals in the three-dimensional form,
  • (2) developments of multiparameter coincidence techniques for studies on stereo-dynamics in electron-molecule collisions,
  • (3) development of time-resolved electron momentum spectroscopy for visualization of the change of electron motion in transient species.
  • We hope to conduct collaborative research with a willing company for a practical application of this technology in industry, and we are also prepared to provide academic consultations to companies interested in our research.
実用化イメージ

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Masahiko Takahashi

Visualization of supply chain risks from the resource logistics perspective

NEXT
PREV
特徴・独自性
  • With the increased global concerns of resource and environmental constraints of recent years, the role of mining, as a constituent of social responsibility associated with resource extraction and usage, is becoming increasingly important in the science, technology, and innovation policy. Under increasing public and shareholders' concerns of social and environmental sustainability, the fabrication industries require careful attention owing to their own risks related to the resources and materials that are used in their products and services. The Material Flow Analysis tool and Input output technique provide useful perspectives and valuable evidences for avoiding or minimizing the social and environmental risks related to the demand of resources.
実用化イメージ

Our developed model evaluates the risk weighted flow analysis by combining the resource logistics database and Global Link Input Output model. The estimated results shed light on how resource logistics prepares policy makers and R&D engineers to confront the risks behind resource usage and how the information should be shared among the stakeholders.

Researchers

Graduate School of Environmental Studies

Kazuyo Matsubae

 X

X-Ray Phase Imaging for High-Sensitive Non-Destructive Testing

NEXT
PREV
特徴・独自性
  • Conventional X-ray imaging methods that rely on X-ray attenuation cannot generate clear contrast in the observation of low-density materials such as polymers consisting of low-Z elements. However, the sensitivity to the materials can be improved drastically by X-ray phase imaging that detects X-ray refraction caused by the materials. X-ray Talbot or Talbot-Lau interferometry consisting of X-ray transmission gratings is now constructed in laboratories for X-ray phase imaging. X-ray phase tomography is also realized, enabling high-sensitive three-dimensional observation.
  • X-ray phase imaging can be utilized for X-ray non-destructive testing of industrial products and baggage that cannot be checked conventionally.
実用化イメージ

We aim at appending a phase-contrast mode to micro-CT apparatuses and developing screening apparatuses in production lines.

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Atsushi Momose

 Y

Yeast models of familial Alzheimer disease to screen for gamma-secretase inhibitors and modulators

NEXT
PREV
特徴・独自性
  • Using the yeast transcriptional activator Gal4 system, we reconstituted the production of amyloid beta (Aβ), responsible for Alzheimer disease. Aβ production could be monitored by the positive growth in the selection media or by the reporter enzyme (β-Gal). Utilizing familial Alzheimer disease mutants, we established a system to screen for mutations and chemicals that modulate gamma secretase activity and reduce toxic Aβ42.
実用化イメージ

Our yeast system can be used to screen for chemicals, natural products, food ingredients, genes, and mutations that modulate γ-secretase activity and block Aβ42 production specifically. We hope to conduct collaboration research with a willing company for a practical application of this technology in industry.

Researchers

Graduate School of Agricultural Science

Eugene Futai