"T" Theme - 7 Result(s)

 T

Testing sperm samples from fathers can predict the incidence of autism spectrum disorder in their children

NEXT
PREV
概要

Autism spectrum markers:
Measuring histone modifications in sperm may be able to predict the risk of neurodevelopmental disorders in the next generation.

従来技術との比較

It is known that the highest risks with regard to the development of developmental disorders in children are ageing and premature birth in both parents, and it has been repeatedly epidemiologically reported that the risk is higher in ageing fathers than in ageing mothers among the parents. Conventionally, sperm are only examined under a microscope to check sperm count, morphology and motility, but not at the molecular level. The present invention is an innovative method that focuses on epigenetic molecular markers.

特徴・独自性
  • While birthrates are falling rapidly, developmental disorders are on the rise
  • Focus on plastic epigenetic molecules as a successional effect of paternal ageing.
  • Sperm testing can be performed non-invasively.
  • Suitable as a quality check for sperm donors etc.
実用化イメージ

The combination of sperm histone modifications and relevant epigenetic factors (DNA methylation, microRNAs) in combination with the sperm panel test will enable highly accurate sperm quality testing.

Researchers

Graduate School of Medicine

Noriko Osumi

The Construction of a Decentralized Energy Production System Using Small Methane Fermentation Systems That Utilize Exhaust Heat or Hot Springs and a Local Circulation System

NEXT
PREV
特徴・独自性
  • In this project, we reduce the costs of energy production via anaerobic digestion by utilizing exhaust heat from a factory, which resulted in a positive energy balance, although the methane fermentation system tested was on a small scale.
  • Using small-scale methane fermentation with a positive energy balance, the initial investment is small, enabling a company to invest in, and install, such a system. This would decentralize energy production within an area. Moreover, this system not only produces energy, but is a basis for resource recycling.
実用化イメージ

Food factory, hotel, restaurant, where food garbage or organic waste was produced much.

Researchers

Graduate School of Agricultural Science

Chika Tada

The intersection between the skeleton and metabolism

NEXT
PREV
概要

Beyond the classic function of bone, bone cells have been shown to regulate whole energy metabolism through bone-derived factors (osteokines). However, much of the research done to elucidate the pathophysiology of metabolic dysfuntion uses the classical approach of studying organs obviously implicated in energy metabolism. When Looking at the importance of skeletal integrity through the lens of evolution, we find that bone served a survival function. Humans had to consistently be mobile to look for food and shelter. Furthering this logic reveals that bone and energy metabolism are entwined. Therefore, this project aims to 1. identify bone factors that are associated with metabolic conditions and 2. to bridge our knowledge of the skeletal system represented by its cell types and our understanding of energy metabolism of the organism into one integrated subject.

従来技術との比較

Our research project offers a transformative advantage over conventional approaches by thinking with the end in mind (i.e translational potential) . We employ a multi-omics approach that goes beyond the conventional focus on single layers of biological information that will deepen our understanding of metbaolic diseases and accelerates identifying novel biomarkers and therapeutic targets.

特徴・独自性
  • Interdisciplinary approach
  • Multi-omics integration
  • Translatioal potential
実用化イメージ

Our research offers potential for early diagnostics, novel biomarkers, and personalized therapeutic approaches for conditions like diabetes, osteoporosis, and diabetic osteoporosis. Our work fosters interdisciplinary collaboration and inspires future translational research and RnD with industrial partners.
This work promotes public awareness of the importance of bone health and ultimately aims to deliver tangible societal benefits.

Researchers

Frontier Research Institute for Interdisciplinary Sciences

Aseel Mahmoud Suleiman Marahleh

The Novel Ultrasound Irradiation Device

NEXT
PREV
特徴・独自性
  • Dr. Katsunori Nonogaki has developed the novel ultrasound irradiation device, which can improve the autonomic nervous system activity and peripheral circulation. In addition, the ultrasoud device can improve hypertension and hyperglycemia within 20 min in subjects with drug-resistant hypertension and diabetes. Our initial device was approved in Japan (226AIBZX00028000). This device will be avaliable for the treatment of 1) muscle pain, 2) the autonomic neural dysfunction and stress-related disorders, 3) hypertention, and 4) diabetes. Moreover, the device will be usefull for your healthy life and aging care.
実用化イメージ

Our aims are to export the device internationally. We seek the investment and international business partners.

Researchers

Research Center for Accelerator and Radioisotope Science

Katsunori Nonogaki

Theoretical Design of New Materials and Device Functionality based on First-principles Calculations

NEXT
PREV
特徴・独自性
  • We are doing theoretical research on electrical conductivity in magnetoresistive devices using highly spin-polarized materials. The aim is to achieve very functional spintronics devices such as read-out heads for ultrahigh-density magnetic recording and non-volatile spin memories. We also investigate magnetoresistive devices using perpendicularly magnetized materials to ensure endurance against thermal fluctuations of the magnetization. We successfully achieve a guideline for improvement of the magnetoresistive performance by designing the crystal structure at the interface between ferromagnets and oxides theoretically.
  • We believe that first-principles calculations, which need no empirical parameter, play a very important role in research and development of various materials. Please contact us if you want to collaborate with us.
実用化イメージ

Researchers

Research Institute of Electrical Communication

Masafumi Shirai

Theory and practice of energy design to drive decarbonization

概要

An indispensable function for decarbonized driving is energy data analysis, an energy car navigation system with both high spatial and temporal resolution. Higher spatial resolution facilitates the recharging and discharging of electric cars and inter-regional energy exchange. With the addition of up-to-the-minute energy data with high temporal resolution, it is possible to rationally and optimally combine the fluctuating output of renewable energy with the consumers. Data analysis, system design, and operation will lead to a carbon-neutral society.

従来技術との比較

Japan's first regional energy supply and demand database has been developed, allowing for detailed design of sustainable and resilient regional energy infrastructure layout and operation based on analysis of the current energy status of cities, towns, and villages nationwide.

特徴・独自性
  • Research experience as a Fulbright Scholar in the U.S. and familiarity with examples of social implementation in Europe.
  • Data-driven innovation research approach based on a vast regional energy supply and demand database.
  • Emphasis on regional fieldwork as a social entrepreneur solving social issues.
実用化イメージ

Putting Theory into Practice. Helping to build sustainable energy systems for new community development. Including the background of the local community, listening to the opinions of the residents, and guiding them to discussions that are relevant to today's issues. Thinking globally and acting within the community.

Researchers

Graduate School of Engineering

Toshihiko Nakata

Transport Control of Semiconductor Quantum Structures and Highly Sensitive NMR

NEXT
PREV
特徴・独自性
  • Highly-sensitive NMR technique has been developed by manipulation polarization of nuclear spins via control of transport characteristics in GaAs and InSb quantum structures. This highly-sensitive NMR can be applied to two-dimensional and nanostructures. Furthermore, ideal gate controllability has been demonstrated in InSb quantum structures with Al2 O3 dielectrics. More importantly, the concept of generalized coherence time was introduced, where noise characteristics felt by nuclear spins can be measured including their frequency dependence. This concept will bring about a change in all nuclear-spin related measurements.
実用化イメージ

Next generation InSb devices based on good gate controllability. Various nuclear-spin based measurements and NMR utilizing the concept of generalized coherence time. Highly-sensitive NMR is now important for fundamental physics studies. In the future, it will contribute to quantum information processing.

Researchers

Center for Science and Innovation in Spintronics

Yoshiro Hirayama