登録されている研究者 431人(研究テーマ419件)

中性子散乱による巨視的量子現象の探索と解明

前の画像
次の画像
特徴・独自性
  • 中性子散乱は他の散乱手法(X散乱や電子線散乱)に比較して、1) Li、 H 等の軽元素による散乱が大きい、2) 磁気散乱を通して物質中の電子スピンを検出可能、3) 弾性散乱(回折)に加えて室温程度の低エネルギー励起の測定が可能という特徴があります。我々は中性子散乱法を用いて、多体電子系における巨視的量子現象、なかでも量子フラストレートスピン系における巨視的非磁性基底状態や磁気揺らぎが媒介する非従来型の超伝導現象の探索とその解明を目的に研究を進めています。
実用化イメージ

上で述べたように、中性子散乱は磁気構造およびスピンダイナミクス、さらに結晶中の軽元素位置やその運動を調べるのに適した手段です。従って、このような情報が必要な材料研究には極めて有用であると考えられます。

研究者

多元物質科学研究所

佐藤 卓  

Taku J Sato

実効性の高い避難確保計画と個別避難計 画の社会実装に向けた実践的研究

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 自然災害はローカルな地域ごとの自然条件に強く依存します。また、仮に同じ自然のハザードに曝されるとしても、災害の様相はその脅威を受ける社会の脆弱性にも強く依存します。そこで、学校等をはじめとした要配慮者利用施設の避難確保計画の策定や、避難行動要支援者の個別避難計画の策定にあたり、地域性や専門性を踏まえて実効性を高めることが社会的な重要課題となっています。その課題解決に向けて産官学の連携・協働に基づいた社会実装に貢献します。
実用化イメージ

学校等の避難確保計画の実効性を高めるための点検/改善の実践モデルの開発や計画策定支援システムの開発、さらには防災管理と関連付けた防災教育モデルの開発等が考えられます。

研究者

災害科学国際研究所

佐藤 健  

Takeshi Sato

わずかな水のみで濡らさずに低温で洗浄・殺菌する技術

前の画像
次の画像
概要

水蒸気を混合した加圧ガスを噴射ノズルから噴出することにより、水蒸気を大気により冷却・凝縮(液化)させ、高速で噴射されるナノメートルスケールの液滴(高速ナノミスト)を生成することが可能です。本技術は、その方法と装置に関するものです。

・ナノミスト発生装置
https://www.t-technoarch.co.jp/data/anken/T20-702.pdf

従来技術との比較

本技術は液滴径が小さく、薬剤を用いずとも力学的・化学的作用などによる殺菌・洗浄が可能。必要水量も少なくドライかつ低温での殺菌・洗浄処理が可能。

特徴・独自性
  • 水蒸気を混合した加圧ガスを噴射ノズルから噴出することにより、水蒸気を大気により冷却・凝縮(液化)させ、高速で噴射されるナノメートルスケールの液滴(高速ナノ液滴)を生成することが可能です。本技術は、その方法と装置に関するものです。
  • ・高速でナノメートルスケールの液滴を噴出することが可能
  • ・低温、超節水、薬剤フリー、濡れない、殺菌
  • ・洗浄が可能・液滴径のサイズや数の制御・計測が可能
実用化イメージ

以下のような社会実装を念頭に、研究を進めています。
・手洗い、シャワー(寝たきり、水インフラがない地域、災害、治療等)
・食品殺菌(食肉、農産物、魚介類、加工品、調理用具、身の回りの物品)
・半導体洗浄、耐熱性の低い材料や濡らさない必要のある材料の殺菌・洗浄

研究者

流体科学研究所

佐藤 岳彦  

Takehiko Sato

ミリ波パッシブイメージング装置の開発と実用化

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 危険物が放射するミリ波を受信し、これをパッシブに完全無侵襲で検知することが可能であり、これを実現するミリ波パッシブイメージング装置の開発を進めてきました。ミリ波帯は波長が1mm〜10mmの電磁波であり、ミリ波を用いる利点として、テラヘルツ波や赤外線に比べて画像の空間分解能が低いものの衣服等の透過率が高いこと、物体から放射された微弱なミリ波を増幅するための低雑音増幅器が存在し、電磁波を照射しないパッシブ方式が実現できる周波数帯であることが挙げられます。現在、装置は主に空港・港湾等の水際で使用するセキュリティー機器として企業との共同研究により開発を進めていますが、火災・警察・医療等への応用も検討したいと考えています。今後ミリ波パッシブイメージング技術の応用分野はさらに広がるものと考えており、産業界で応用を検討したい企業・団体との共同研究を希望します。
実用化イメージ

研究者

大学院工学研究科

佐藤 弘康  

Hiroyasu Sato

粒界工学による粒界劣化現象抑制に基づく高特性材料の開発

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • オーステナイト系ステンレス鋼やニッケル合金は粒界劣化現象が永年の大きな問題です。当グループの開発した粒界工学制御プロセスは、通常ステンレス鋼の粒界腐食(図1、2)、溶接部腐食、応力腐食割れ、液体金属脆化、放射線損傷などに対する抵抗性を著しく向上させるとともに、高温クリープ破断寿命を顕著に延長(図3)させるなど、粒界劣化現象抑制による著しい特性改善を実現しました。
実用化イメージ

この粒界工学制御技術により、金属材料の耐食性や高温寿命の向上が期待できることから、電力・化学プラント配管、高温高圧容器、食品加工機器などの製造業への適用が想定されます。

研究者

大学院工学研究科

佐藤 裕  

Yutaka Sato

異種材料接合における新たな界面設計・制御

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 異種材料接合は、次世代の構造物やデバイスの製造において重要な技術ですが、これまでは、接合界面での過度な素材間の反応により特性が劣化するため、良好な接合継手を得ることは困難でした。当研究室では、素材間の過度な反応を抑制し得る摩擦攪拌接合や超音波接合などの固相接合技術を駆使し、また接合時の界面現象解明を通じて、特性を劣化させない界面を、意図的に作り込む新たな接合技術の開発を目指しています。
実用化イメージ

次世代の輸送機器や電力設備などでは、鋼、アルミニウム合金、チタン合金、銅など各種金属同士の接合に限らず、金属と熱可塑性樹脂との接合も含めた異種材料接合の実機適用を目指した企業等との共同研究を希望します。

研究者

大学院工学研究科

佐藤 裕  

Yutaka Sato

胃腸炎ウイルス吸着性腸内細菌の活用

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 本研究室では、ノロウイルスやロタウイルスなど、水を介して感染が拡大する胃腸炎ウイルスを特異的に捕捉する血液型決定抗原様物質陽性細菌が存在することを世界で初めて証明しました。この腸内細菌は、ヒト体内および環境中で、胃腸炎ウイルスの生態に大きな影響を与えているものと考えられています。
実用化イメージ

胃腸炎ウイルス吸着性腸内細菌は細胞へのウイルス感染効率に影響を与えることから、胃腸炎ウイルス吸着性腸内細菌および産生される血液型決定抗原様物質は、プロバイオティクスにおける活用が期待できます。

研究者

大学院工学研究科

佐野 大輔  

Daisuke Sano

受精卵および幹細胞の新規品質評価法の開発

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 走査型プローブ顕微鏡に基づく生体分子評価システムの探索に一貫して取り組み、プロテインアレイの構築とイムノアッセイへの応用を提案しました。また、微小探針を改良して1細胞ごとのmRNA 回収法を確立し、核酸- タンパク質の同時定量に取り組んでいます。走査型電気化学顕微鏡(SECM)を含むプローブ顕微鏡システムをツールとし、核酸、タンパク質、生体膜、細胞、初期胚を含む広い応用分野の開拓に成功しました。これらの研究は初期胚研究への適用が期待できます。
実用化イメージ

体外受精- 胚移植は、医療分野では不妊治療、畜産分野では優良家畜の効率的生産を可能としています。体外培養技術の進歩によりクオリティの高い胚の作出が可能となっていますが、その後の子宮への胚移植、受胎率、産仔の成功率は依然として低い水準にあります。これまで、受精卵の品質評価は形態観察に基づき行われてきました。我々は、単一受精卵ごとの呼吸活性を指標とした客観的な受精卵の品質評価法を開発しました。我々の特許をもとに「受精卵呼吸測定装置」が装置化・実用化され、ウシ・マウス・ヒトの受精卵移植試験実施に至りました。

研究者

大学院工学研究科

珠玖 仁  

Hitoshi Shiku

原子拡散接合法(新しい室温接合技術)とその応用

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 原子拡散接合法(Atomic DiffusionBonding, ADB)は、同種・異種のウエハ等を室温で接合する、我々が提案した新しい技術です。標準的なADB は、超高真空中で薄い金属膜を使って接合する技術ですが、最近、酸化膜や窒化膜を使ったADB 開発にも成功し、接合界面の機能を更に向上させました。また、Au 膜等を用いた大気中接合は、利便性が高く、優れた熱伝導性等を実現できます。
実用化イメージ

新しい電子デバイス、光学デバイス、パワーデバイス、MEMS、ポリマー等の有機系デバイスの形成や、精密機器部品等への展開が期待され、一部は実際のデバイス形成技術として既に利用されています。

研究者

高等研究機構学際科学フロンティア研究所

島津 武仁  

Takehito Shimatsu

レクテナ発電による中・遠赤外光の電力変換

前の画像
次の画像
概要

無線送電技術であるレクテナを用いた赤外光の電力変換技術です。赤外光を電磁波としてアンテナで吸収して生じる交流電場をダイオードで整流することで電力へと変換します。アンテナの設計次第であらゆる波長の赤外光を電力変換できるため、中・遠赤外光が主体となる300℃以下の物体からの熱ふく射も電力変換可能です。

従来技術との比較

従来の熱発電技術とは全く異なる方法により電力変換を行います。熱ふく射を電力変換するため熱源と素子が接触する必要が無く、耐久性やデバイス設計自由度が高いです。電力変換可能な波長域は材料に依らずアンテナ設計次第で自由に制御することができます。

特徴・独自性
  • 赤外光の波動性に基づいた電力変換を行うため、材料物性に依らず感度波長を自由に制御できることが最大の特徴です。全ての有限温度物体は熱ふく射を放出するため、原理的にあらゆる温度域の熱源から電力を抽出することが可能となります。
  • レクテナ発電はマイクロ波を用いた無線送電技術として既に確立されていますが、赤外光は電磁波の周波数が非常に高いため(1013Hz~)、高速応答するダイオードの開発とエネルギー損失のないデバイス化が課題です。
  • 高速応答ダイオードとしては、金属ナノ粒子を用いたトンネルダイオード技術を新たに提案し、高性能化を達成しています。エネルギー損失のないデバイスとしては、空洞共振器構造に基づくデバイスを新たに提案し、可視~中赤外光の発電を実現しています。
実用化イメージ

あらゆる環境で発電が可能であり薄膜化も可能であるため、自立型センサ等の電源応用が期待できます。

研究者

大学院工学研究科

清水 信  

Makoto Shimizu

ナノスケールの構造と組成不均一性を利用した鉄鋼材料の組織制御

概要

安全性を確保しつつ、自動車の燃費改善または構造物の小型化を実現するため、最も多く使われている鉄鋼材料の高強度化が求められる。これまで合金組成や熱処理プロセス条件を変えることで材料全体の平均的な組織制御が行われてきたが、ナノスケールの組織制御が未成熟である。本研究では、これまでの実験調査で困難であったナノスケールの構造・組成不均一性の生成挙動を調査し、高強度鋼組織制御の指針構築に取り組んだ。

従来技術との比較

従来では鉄鋼材料の組織制御は経験的な条件に基づくことが多いが、本研究では熱力学・速度論・結晶学などの知識に基づき鉄鋼材料におけるナノスケールの組成・構造不均一性の挙動を解明した。

特徴・独自性
  • 様々な先端技術を組み合わせた多面的解析手法で実験調査を行い、ナノスケールの構造・組成不均一性の生成挙動を調査しました。
  • 実験結果をもとに、熱力学・速度論・結晶学などの観点で解析を行うことにより、その不均一性におよぼす諸因子の影響を解明しました。
  • 実験解析に留まらず、熱力学データを活用してその挙動の再現、さらに予測ができるような理論計算も同時に実施しました。
実用化イメージ

鉄鋼材料の高強度化に基づき、自動車をはじめとした輸送機器の軽量化または構造物の小型化が可能となり、素材製造や輸送分野のCO2削減の観点でカーボンニュートラルの実現への貢献が期待されます。

研究者

金属材料研究所

張 咏杰  

Yongjie Zhang

金属材料のナノ複合化と高機能化

前の画像
次の画像
概要

カーボンナノチューブ(CNT)、グラフェン、MXene などの低次元強化相を金属複合材料の強化材として活用する。界面反応を意図的に制御することで、低次元強化相特有の特性を引き出す方法を明確化し、有効な荷重伝達を実現することで、優れた機械特性、導電率、熱伝導率を同時に向上させる。更に、新規な複合粉末の製造方法の確立並びに3Dプリンターを活用した高機能金属(Al、Cu、Ag、Ti など)を開発する。 

従来技術との比較

適切な界面反応が界面結合を大幅に改善できることを示し、従来の考え方とは異なる発見であった。従来のボールミリングやアトマイズ法などの方法とは異なり、新しい複合粉末の作製手法が開発された。3Dプリンター中の急速凝固を活用することで、状態図上では溶解が困難と予想される大量のナノ炭素や酸化物を強制的に固溶させ、高機能金属材料として実現することが可能となる。

特徴・独自性
  • ナノカーボンやナノバブルを活用し、ヘテロ凝集させナノセラミックス/金属粉末を製造するプロセスを提案する。複合材料開発のためのハイスループット手法を確立し、機械学習を用いて強化相の添加、界面組織、および物理・機械的特性の関係を予測するモデルを構築する。金属とセラミックスの優れた機械的・物理的特性を組み合わせることで、多機能部品の実現が可能となる。
実用化イメージ

金属およびセラミックス基複合粉末の作製が可能である。導電体の軽量化や送電ロスの低減に加え、銅資源問題への対応が期待できる。高強度かつ高抗菌性を有する生体用金属材料の積層造形を目指す。

研究者

大学院工学研究科

周 偉偉  

Weiwei Zhou

第一原理計算に基づく新材料・素子機能の理論設計

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 超高密度磁気記録用読出しヘッドや不揮発性スピンメモリなど高機能なスピントロニクス素子を実現するため、高スピン偏極材料を用いた磁気抵抗素子における電気伝導に関する理論研究に取り組んでいます。また、磁化の熱ゆらぎに対する耐久性向上を目指して、垂直磁気材料を用いた磁気抵抗素子の研究にも着手しています。強磁性体と酸化物の界面での結晶構造を理論的に設計して、磁気抵抗性能を向上させるための指針を得ることに成功しています。経験的パラメタを必要としない第一原理計算手法は、スピントロニクス分野に限らず、多様な材料研究・開発の場において重要な役割を果たすものと確信しています。共同研究のご要望がございましたら、ご一報いただければと思います。
実用化イメージ

研究者

電気通信研究所

白井 正文  

Masafumi Shirai

男性の更年期障害を改善する食品成分

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 近年、加齢や過度のストレスによる加齢男性性腺機能低下(LOH)症候群が注目されています。LOH 症候群は男性ホルモンの合成量が減少することで発症し、筋肉機能、性機能の低下だけでなく鬱などの精神的症状も招きます。食品成分による男性ホルモン増強作用をスクリーニングする系を精巣由来細胞を用いて確立し、ビタミン、サプリメント、食経験のある植物抽出物などが増強活性を持つことを明らかにしました。
実用化イメージ

上記の成分や新たに選抜した成分を高含有する食品にLOH 症候群の予防・改善効果が期待され、「中高年にやる気を与える食品」の開発につなげています。

研究者

大学院農学研究科

白川 仁  

Hitoshi Shirakawa

先端ワイヤレス通信

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 地上系・衛星系を統合した高度情報ネットワークの実現を目指して、高信頼かつ電力消費の少ない先端ワイヤレス通信技術に関して、高周波回路、信号処理回路、RFIC、実装技術から送受信機技術、変復調、ネットワーク技術に至るまで、一貫した研究・開発を行っています。
実用化イメージ

地上無線通信あるいは衛星通信用の送受信機のハードウェア技術、例えば、ディジタルRF、フェーズドアレーアンテナなどのビームフォーミング回路、ソフトウェア無線機の技術に関して、共同研究が可能と考えています。

研究者

電気通信研究所

末松 憲治  

Noriharu Suematsu

次世代ワイヤレスIoT実現のための無線機ハードウェアおよび通信システムの研究

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 電波が吸収され届きにくかった人体内と体外をつなげる通信、工場内などの高密環境でも干渉を低減し、リアルタイム性を実現する通信、周波数資源をディジタルビームフォーミングにより空間的・時間的に分割して有効利用できる通信など、次世代ワイヤレスIoTに関する研究を、デバイス・回路・実装・ディジタル信号処理技術から送受信機・サブシステムに至るまで一貫して研究・開発を行っています。
実用化イメージ

以下のような社会実装への応用が期待されます。
・当研究室で開発したリアルタイムスペクトラムモニタによる、各種無線通信機器間干渉の見える化
・5Gで注目されているミリ波、サブテラヘルツ無線の送受信機、デバイス、アンテナの評価、開発などの技術支援

研究者

電気通信研究所

末松 憲治  

Noriharu Suematsu

高精度デバイスプロセス技術と新規イメージセンサ開発

前の画像
次の画像
特徴・独自性
  • クリーンルーム・ユーティリティのレベルから、材料、装置、プロセス、デバイス、回路、実装、信号処理、計測・評価、信頼性に至るまでの研究に総合的に取り組みつつ、それらを基盤として、イメージセンサの極限性能の追及を行っています。
  • 今までに、100 万個を超えるトランジスタ性能の高精度高速計測技術(2004 年)、明暗差5 ケタの単露光撮影を可能とした広ダイナミックレンジCMOS イメージセンサ(2008 年)、毎秒1000 万コマの撮影が行える高速CMOS イメージセンサ(2012 年)などの実用化に成功しています。
実用化イメージ

デバイスメーカの量産ラインと相互乗り入れ可能な清浄度を有する200mmウェーハのシリコンデバイス流動が行えます。また、現有するクリーンルーム施設設備を利用した要素プロセス検討、高度な各種分析評価が行えます。新規イメージセンサの開発に取り組むことができます。

研究者

未来科学技術共同研究センター

須川 成利  

Shigetoshi Sugawa

脳を知れば人間がわかる

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 人間らしい精神と行動を実現する脳の仕組みを、脳機能計測(図1)と生理・行動計測を駆使して明らかにしています。心の仕組みは、自己と外界との関係性の認知処理という視点から、3つの脳領域群(図2)で処理される「出力とフィードバック入力の関係性」(図3)として整理されます:身体的自己(身体と外界の関係:A)、社会的自他関係(自己と他者との社会的関係:B)、自己の社会的価値(C)。
実用化イメージ

心の働きを脳活動から推測する技術の開発や、人間らしい判断を可能にするアルゴリズムの開発を通じて、製品開発・評価に応用できる可能性があります。

研究者

加齢医学研究所

杉浦 元亮  

Motoaki Sugiura

ウェアブル“レス”な生体信号計測

前の画像
次の画像
概要

生体情報を完全非接触な方式で取得するウェアブル“レス”な計測について研究をしています。光学的手法である映像脈波の技術については、心拍数に加えて血圧値や血中酸素飽和度なども推定することを目指して、撮像手法と推定モデルの改良を行っています。また、電波を使った手法として、Bluetooth などの一般的な通信用電波の状態から人間の活動パターンを推定する技術を開発しています。特に、人の移動を模した自走ロボットを用いることで、環境変化に対してロバストな手法を確立することを目指しています。映像脈波の計測システムを鏡などの日常的に顔を向けるものに組み込むことで、継続的に生体信号を取得することができます。また、乳幼児や高齢者など、センサを付けることに抵抗がある対象者にも適用することが可能なため、生体の循環動態を絡めた見守りシステムなどに応用することができます。電波を使った計測では、特殊な機器を必要とせず、プライバシーに配慮した見守りなどを行うことが可能になります。

従来技術との比較

従来のような皮膚に接触させるセンサを用いることなく、完全非接触で心拍数などの生体情報を計測することを可能とします。

特徴・独自性
  • 映像脈波に関しては、従来の心拍数に加えて血圧値や血中酸素飽和度などを推定することを目指し、推定モデルと撮像方法の改良を通して推定精度の向上を図っています。
  • 電波による活動パターン推定では、人の移動を模した自走ロボットを用いることで、人を使ったデータ収集が不要なモデル構築を目指しています。
実用化イメージ

ウェアレス生体計測は、センサ装着が難しい対象者や環境での計測に対して有用な技術です。また、センサ装着のし忘れがないため、長期間にわたる生体データ収集などにも活用が期待できます。

研究者

サイバーサイエンスセンター

杉田 典大  

Norihiro Sugita

高圧力下での合成,焼結

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 川井型マルチアンビル装置およびキュービック装置を使用して、高温高圧力下で材料合成および焼結を行います。20GPa、2000K までは容易に行えます。25GPa、2300K まで可能です。
実用化イメージ

超硬材料、磁性材料、高温超伝導体などで高圧合成を必要とする物質です。

研究者

大学院理学研究科

鈴木 昭夫  

Akio Suzuki