登録されている研究者 430人(研究テーマ416件)

低侵襲・低穿刺力・高精度で軟組織へ穿刺可能

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 注射やカテーテルを用いた経皮的針穿刺は、患者体内の疾患を低侵襲的に診断・治療する方法として現場で行われています。一方、穿刺対象である臓器や腫瘍は体内で完全に固定されておらず、針の動きと共に移動する(穿刺抵抗が高い)ため正確に穿刺することが困難でした。本発明は、穿刺抵抗が高い臓器や主要に対して小さな穿刺力で穿刺できる装置として、複数の溝を設けた針に微細な2軸の振動を付与する穿刺装置を提供します。効果・穿刺する際に振動を印加することで穿刺抵抗を低減できます。・瞬発穿刺によって体内で動いてしまう臓器の変異や回転を減らすことができます。
実用化イメージ

以下のような社会実装が想定されます。
・内視鏡用穿刺装置
・ロボット支援手術用穿刺装置

研究者

大学院工学研究科

菊地 謙次  

Kenji Kikuchi

イオン交換樹脂を触媒とした高品質脂肪酸エステル連続製造技術

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 軽油代替燃料バイオディーゼルとなる脂肪酸エステルを、従来法では利用できない非食用の低品質原料(食用油製造工場で排出する脂肪酸油や酸価の高いジャトロファ油)でも反応率100% で連続製造できるパイロットスケールの全自動装置を完成させました。固体の酸・アルカリ触媒としてイオン交換樹脂を用いることで、石鹸の副生をなくし、同時に副生物除去を達成することで、輸送用燃料の品質規格を満たす高品質品を低コストで生産できます。
実用化イメージ

食用油製造工場で排出するアルカリ油滓やダーク油、脂肪酸油から脂肪酸エステル製造が可能です。化学原料として脂肪酸エステル製造を実施する企業、天然油から有価物回収時にエステル化工程を用いる企業との連携が可能です。

研究者

大学院工学研究科

北川 尚美  

Naomi Kitakawa

スーパービタミンEトコトリエノールの高効率回収技術

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 本技術は、
  • 1. 分子蒸留を一切行わないため熱安定性の低いトコトリエノールを分解なしに100% 回収できる、ビタミンE 類(トコトリエノールとトコフェロール)を選択的に樹脂に保持できるため不純物混入量が少なく高純度で回収できる、
  • 2. ビタミンE類の回収と同時に遊離脂肪酸とトリグリセリドを何れも転化率100% で脂肪酸エステルに変換できる、
  • 3. 樹脂充填層に溶液を供給するだけの簡便な操作で連続操作が可能である、という特長を持ちます。
実用化イメージ

抗癌作用が注目されているトコトリエノールを医薬品や食品添加物として利用したい企業、原料ビタミンE濃度が低くても選択的に完全回収できるため、スカム油からのビタミンE回収率向上を目指す企業との連携が可能です。

研究者

大学院工学研究科

北川 尚美  

Naomi Kitakawa

家畜対応型の粘膜免疫調節機能性の評価系構築

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 食の安全性から健全生活の向上に貢献する上で、薬剤に頼らない家畜生産技術の開発が望まれます。我々は、世界に先駆けて樹立したブタおよびウシ腸管上皮(PIE,BIE)細胞により、家畜対応型の腸管免疫調節機能性の評価系を構築しました。本評価系は、家畜に最適な腸管免疫を介する生菌剤や有用成分の選抜・評価を可能とし、動物実験を軽減させながら効率よく薬剤代替のための選抜・評価が行える他、詳細な機構解明にも有用です。
実用化イメージ

畜産業界における飼料や動物医薬の開発において、家畜に対応した生菌剤等のスクリーニングおよび有効性の評価や既存製品の再評価、機構解明等の推進が可能となり、新たな製品開発に向けた有意義な共同研究ができます。

研究者

大学院農学研究科

北澤 春樹  

Haruki Kitazawa

簡便・低コスト・高感度な一塩基多型(SNP)分析法による品種判別、種同定、突然変異選抜

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 独自に開発したdot-blot-SNP 分析法や、磁気ビーズ法により、遺伝子の一塩基の変異を多数の植物個体について低コストで分析できます。分析技術の熟練が必要ですが、一度に数千個体の遺伝子型分析を低コストで行うことが可能です。
実用化イメージ

作物育種の現場でのDNA 分析による遺伝子型判定や突然変異体の選抜、さらに、種子の純度検定、品種の同定、異品種混入の同定等に利用することができます。

研究者

大学院農学研究科

北柴 大泰  

Hiroyasu Kitashiba

未来の生活を豊かにするインタラクティブコンテンツ

前の画像
次の画像
特徴・独自性
  • 様々コンテンツ、それを見たり使ったりする人々、そしてこれらを取り巻く空間を含めて考え、これらの間のさまざまな関係に注目して、人々の作業を効率的にしたりコミュニケーションを円滑にしたりするインタラクションの手法を提案しています。
  • 例: 非言語情報通信、3 次元モーションセンシング、コンテンツのインタラクティブで柔軟な表示、ドローンの利活用技術、クロスモーダルインタフェース、バーチャルリアリティ
実用化イメージ

我々の技術や知見を世の中の多くの方々に使っていただき、生活を便利にしたり、快適にしたりすることにつながれば嬉しいです。そのために、いろいろな分野の方と一緒に連携させていただきたいと思います。

研究者

電気通信研究所

北村 喜文  

Yoshifumi Kitamura

低ヤング率を有する新規CoCr系生体用超弾性金属材料

前の画像
次の画像
特徴・独自性
  • 一般的に使用されているステンレス鋼および従来のCoCr合金などの生体用金属材料は、生体骨より10倍もの高いヤング率を示し、インプラントによる骨の萎縮現象が問題視されている。β-Ti合金は比較的に低いヤング率を示すが、耐摩耗性が低い。本新規CoCr系合金は、低ヤング率と高耐摩耗性の両立を初めて実現した。さらに、耐食性が優れ、17%以上の超弾性歪みも示すことから、次世代生体材料として有望である。
実用化イメージ

生体骨と同程度の低いヤング率、高い耐食性と耐摩耗性および優れた超弾性特性の 4 拍子そろった本 CoCr 系生体材料は、人工関節、ボーンプレート、脊髄固定器具やステントなどへの応用が期待される。

研究者

大学院工学研究科

許 皛  

Xiao Xu

能動ファイバセンサ

前の画像
次の画像
特徴・独自性
  • 本研究における多機能ファイバの特徴として、デバイスに必要な部材を全て内包するプレフォームを設計することで、熱延伸処理によるロール巻き取りが可能である。このため従来技術で問題点となる微細で複雑な積層構造をファイバに新たに追加する必要がなく、量産性も高いため製造コストを大幅に削減することも可能である。さらに容易にファイバの線径を制御して微細化できるため、ウェアラブルデバイスなどにも応用が可能である。
実用化イメージ

応用例として、微小空間でも検査可能な能動カテーテルが挙げられる。光ファイバによるカメラ機能や電気化学センサの付与が可能である。着用者の生体情報を常にセンシングできるウェアラブルデバイスも挙げられる。

研究者

高等研究機構学際科学フロンティア研究所

郭 媛元  

Yuanyuan Guo

リチウムイオン内包フラーレンを用いた二次電池の開発

前の画像
次の画像
特徴・独自性
  • リチウムイオン内包フラーレン(Li+@C60)を用いた二次電池を開発しています。その中でもLi+@C60をカチオンとしたイオン液体を電気二重層キャパシタ(EDLC)の電解質として用いた[Li+@C60]・EDLC は、広い温度域で高い運動性を示す球形のC60殻内に安定に閉じ込めたLi+を用いるため、イオン液体中でも高密度で高速蓄電が可能で、高い安全性が確認されています。
実用化イメージ

宇宙などの極限環境下で使用可能な二次電池としての応用が期待されます。さらに、Li+@C60を用いた全固体型二次電池への展開も可能で、飛躍的な蓄電密度の向上が達成できます。

研究者

大学院理学研究科

權 垠相  

Eunsang Kwon

エネルギー・環境問題の解決に向けたマルチフィジックス・マルチスケールシミュレーションによる材料設計

前の画像
次の画像
特徴・独自性
  • エネルギー・環境問題の解決には、燃料電池、リチウムイオン電池、トライボロジーなどの多様な研究分野において高機能・高性能材料の開発が必須です。久保研究室では、ナノスケールにおける化学反応とマクロスケールの多様な物理現象が複雑に絡み合ったマルチフィジックス・マルチスケール現象を解明可能な量子論に基づくシミュレータを世界に先駆けて開発することで、理論に基づく高精度な材料設計を推進しています。
実用化イメージ

久保研究室で開発したマルチフィジックス・マルチスケールシミュレーション技術の活用により、自動車、機械、エレクトロニクス、材料、金属、化学等の多様な企業における材料開発を高精度な理論に基づき促進します。

研究者

金属材料研究所

久保 百司  

Momoji Kubo

社会科学をエンターテインメントコンテンツにする

前の画像
次の画像
概要

経済データの分析やシミュレーションを研究している中で、これらの技術をエンターテインメントコンテンツの作成に活かせないかと思うようになりました。例えば、現実の社会経済データに徹底的に基づいたリアルな経営シミュレーションゲーム、統計データから不自然な点を探して企業犯罪を見抜くミステリー小説、料理レシピの各材料についてその生産地や経済事情、貿易統計などを一緒に学べる料理本などを構想しています。

従来技術との比較

例えば何かシミュレーションゲームを作るのであれば、そのパラメーターの設定が必要になります。これを、実際に研究で使っているレベルで精密に、特にマクロ経済学のカリブレーションという手法を応用して行えると考えています。また、金融ビッグデータの解析経験などから、専門家でないと扱えないような詳細な統計分析をエンターテインメントに落とし込めるのではと期待しています。

特徴・独自性
  • 堅い研究と柔らかいエンターテインメントを結ぶこと
  • 経済モデルのパラメーター設定手法をゲームに持ち込むこと
  • 金融・経済教育への応用
実用化イメージ

このようなコンテンツを、ゼミの大学生と一緒に作りたいと考えています。企業様には、コンテンツの方向性などを指導していただきつつ、一緒に製品開発に取り組めますと幸いです。

研究者

大学院経済学研究科

久保田 荘  

So Kubota

特別ニーズ教育へのブレンディドラーニング活用

前の画像
次の画像
特徴・独自性
  • 教育場面における人間のコミュニケーション過程や機器とのやりとりに関心があります。特別な教育上のニーズを有する生徒、両親、教員を対象とした面接・質問紙調査、行動観察、実験等によって、ブレンディドラーニングやデジタル教材の必要性、アクセシビリティ、ユーザビリティ、有効性とその要因を検討しています。
実用化イメージ

教材や指導法の設計と開発への貢献が期待されます。

研究者

大学院教育学研究科

熊井 正之  

Masayuki Kumai

計算材料学

前の画像
次の画像
特徴・独自性
  • 私たちは、第一原理計算と情報学を用いて、従来実験では到達できなかった数の物質を探索し、有望な材料を発見することを研究テーマとしております。特に、第一原理計算の自動化やデータベースの構築、さらにはそれらを用いた特性の理解、新材料探索を得意としています。
実用化イメージ

自動計算の仕組みの導入や、どのような計算を行うかのアドバイス、計算で得られた結果の解釈を通して、実用に資する新材料の探索を共同で行います。また情報学を用いた材料研究の支援を行います。

研究者

金属材料研究所

熊谷 悠  

Yu Kumagai

生体高分子が起こす反応・構造変化の可視化

前の画像
次の画像
概要

生命にとって重要な構成物質であるタンパク質は細胞情報伝達や生体内触媒反応など様々な役割を果たします。タンパク質立体構造はそうした機能と深く相関しており機能発現の際にどのような構造変化を起こすのか興味が持たれています。当研究室ではNanoTerasuの放射光やX線自由電子レーザー等の量子ビームを用いて、タンパク質の中で起こっている化学反応や構造変化を高い時間・空間分解能で可視化する技術を開発します。

従来技術との比較

従来の方法ではナノスケールのタンパク質がフェムト秒~ミリ秒といった高速で動く様子を原子レベルで捉えることは困難でした。

特徴・独自性
  • このシーズは以下の特徴を持ちます。
  • ・タンパク質の構造変化や反応を高い時間・空間分解能で可視化します。
  • ・動的構造解析を基に新たな分子設計が期待されます。
  • ・微結晶にX 線自由電子レーザーを照射し、得られるX 線回折像からタンパク質構造解析を行う手法である「シリアルフェムト秒結晶構造解析」があります。これによりフェムト秒X 線レーザーにより放射線損傷が顕在化する前に回折像の取得が可能です。
実用化イメージ

放射光やX 線自由電子レーザー等の量子ビームを用い、タンパク質の中で実際に起こっている化学反応や構造変化を高い時間・空間分解能で可視化する技術を開発し、得られた動的構造を基に新たな分子の設計を目指します。

研究者

多元物質科学研究所

南後 恵理子  

Eriko Nango

自然免疫を標的とした創薬と利用

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 自然免疫は、感染症、急性炎症、自己免疫疾患などと密接に関係するだけでなく、最近、自然免疫と一見無関係とも思えるガンの転移やメタボリックシンドロームなどの疾患とも関係していることが明らかになってきました。したがって、自然免疫は創薬の重要なターゲットです。これまでに、自然免疫の種間での共通性を利用して、ショウジョウバエ個体を用いた自然免疫スクリーニング系を確立し、自然免疫を活性化する化合物、あるいは抑制する化合物を同定しています。また、自然免疫シグナル機構を利用した新たな検出技術も開発しています。
実用化イメージ

創薬だけでなく、新たな検出技術の開発につながることが期待できます。

研究者

大学院薬学研究科

倉田 祥一朗  

Shoichiro Kurata

表面力測定による材料ナノ界面科学の創製

前の画像
次の画像
特徴・独自性
  • 固- 液界面現象、そして表面間の相互作用を分子レベルで具体的に解明することを目的として研究しています。中心手段は、2つの表面間に働く相互作用力の距離依存性を直接測定する表面力測定、そして当研究分野で開発した液体ナノ薄膜の構造化挙動を高感度で評価できる共振ずり測定法です。従来困難であった不透明試料( 金属、セラミック、高分子など) が測定できるツインパス型表面力装置も独自開発し、電極界面の評価も行っています。
実用化イメージ

機能材料界面における表面電荷や吸着状態等の特性やナノレオロジー・ナノトライボロジーの評価が可能です。機械、潤滑剤、ナノ材料、塗料・シーラント、化粧品等の業種に対して共同研究・学術指導を行う用意があります。

研究者

未来科学技術共同研究センター

栗原 和枝  

Kazue Kurihara

電子デバイスの高性能・高信頼化のための配線材料と形成プロセスの開発

前の画像
次の画像
特徴・独自性
  • 半導体デバイスからなる電子製品は、半導体自体はもとより、半導体に接続する金属配線があって製品として動作する。金属配線に求められる課題は、半導体材料との良好な電気的コンタクト、相互拡散の防止、良好な密着性、および配線材料の低電気抵抗、耐腐食性、プロセス耐性などがある。本研究室では、種々のデバイスのニーズにあった配線材料の開発ならびにコストパフォーマンスを追求したプロセス技術を開発することによって、高性能かつ高信頼性の先端デバイス開発に貢献している。
実用化イメージ

Si半導体多層配線において拡散バリア層を自己形成するCu合金配線、IGZO 酸化物半導体に対して熱反応によるキャリアドーピングを行えるCu 合金配線、SiC パワー半導体に対して優れた熱・機械的信頼性と良好なコンタクト特性を示すNb 合金配線、タッチパネル用途などのITO透明導電膜に対するCu 合金配線、太陽電池におけるCu ペースト配線、などがある。

研究者

未来科学技術共同研究センター

小池 淳一  

Junichi Koike

言葉遣いのユニバーサルデザイン

前の画像
次の画像
概要

健常な母語話者だけでなく、外国語学習者や失語症患者など、誰にとっても理解しやすい言語表現の性質、すなわち「言葉遣いのユニバーサルデザイン」を探る研究をしています。現在は特に「言語の語順」と「思考の順序」の関係について調べています。語順が違うと脳の使い方がどのように異なるのか、思考の順序はどの程度、言語の語順に影響されるのか、人間にとって最適な言語の語順や思考の順序というものは存在するのか、など。

従来技術との比較

主語(S)が目的語(O)に先行するSO語順がその逆のOS語順に比べて処理負荷が低く母語話者に好まれる傾向があること(SO語順選好)が多くの研究で報告されています。しかし、従来の研究は日本語や英語のようにSO語順を文法的基本語順にもつSO言語を対象にしているため、SO語順選好が個別言語の基本語順を反映したものなのか、あるいは人間のより普遍的な認知特性を反映したものなのかが分かりません。

特徴・独自性
  • そこで、これまで全く研究されてこなかったOS 語順を基本語順にもつ少数民族の言語(カクチケル語とタロコ語)の脳内処理過程を、特に「言語の語順」と「思考の順序」との関係に着目して研究し、その結果を日本語や英語の脳内処理過程と比較しています。その際、話者の居住地(グアテマラと台湾)に実験装置を持ち込み、行動実験、視線計測、脳機能計測など多様な手法を駆使して調査・実験を行っています。また、持ち運びのできないMRI などの大型の装置を使う実験は、話者を日本に招聘して実施しています。
実用化イメージ

以下のような社会実装が想定されます。
(1)効果的な外国語教授法・学習法の開発、(2)失語症のリハビリプログラムの改善、(3)危機言語・方言の動態保存、などに貢献できる可能性が考えられます。

研究者

大学院文学研究科

小泉 政利  

Masatoshi Koizumi

精密ものづくり計測に関する研究

前の画像
次の画像
特徴・独自性
  • 精密加工品の形状及び精密機械の運動を必要な精度で計測するという精密ものづくり計測の研究に取り組んでいる。独自の計測原理に基づいて、グレーティングなどの微細格子と波動光学系を組み合わせることによって、超精密ものづくり計測の基本道具となる高精度かつコンパクトな多軸変位、角度センサを実現させている。各種超精密及びマイクロ加工品の形状を高速高精度に測定する実用的なシステムの開発も行っている。
実用化イメージ

多軸変位、角度センサは半導体及び電子部品製造・検査装置、超精密加工機、超精密測定機の運動計測に活用され、また、形状測定システムは超精密加工分野で利用されることを期待し、産業界との共同研究を希望する。

研究者

大学院工学研究科

高 偉  

I Ko