"A" Researcher - 6 Result(s)

A

 A

Additive Manufacturing of Metallic Parts with Electron Beam Melting (EBM)

NEXT
PREV
特徴・独自性
  • Electron beam melting (EBM) is a type of additive manufacturing technologies. EBM uses electron beam as an energy source to melt metal powder and produce metal thin layers. This sequence is repeated in a layer-by-layer manner to fabricate three-dimensional (3D) components.
  • This technology can produce any kinds of structures based on 3D CAD models and is suitable for custom-made manufacturing.
  • In addition, our recent studies revealed that the unique microstructure, such as directional solidification and uniform dispersions of fine precipitates, are obtained by EBM; this technology is useful to realize advanced materials that cannot be obtained conventional manufacturing.
実用化イメージ

The EBM technology has received much attention for producing metal parts used in biomedical, aerospace and automotive industries.
Rapid prototyping / rapid tooling is one of the applications of this technology.

Researchers

New Industry Creation Hatchery Center

Akihiko Chiba

Understanding Biological Control Systems and its Application to Development of Life-Like Resilient Systems

NEXT
PREV
特徴・独自性
  • In contrast to artificial systems, living organisms exhibit astoundingly adaptive and resilient properties. One of the central research goals in our laboratory is to endow artificial systems with similar properties. To this end, we are particularly focusing on the concept of autonomous decentralized control. We have so far successfully developed various types of robots on the basis of decentralized control, including amoeboid robots, snake-like robots, legged robots etc., in collaboration with mathematicians and biologists.
実用化イメージ

Development of adaptive autonomous robotic system, Control of Large D.O.F. system

Researchers

Research Institute of Electrical Communication

Akio Ishiguro

Development of Novel Scintillator and Piezoelectric Crystals

NEXT
PREV
特徴・独自性
  • Our research target is mainly focused on the topic of development of novel scintillator crystals, piezoelectric crystals, growth technology, characterization and its device application.
  • We design and synthesize new materials from a view point of Crystal Chemistry, and investigate their structure and physical properties. We also study on photo-detector, as suitable photo-detector fully contribute to get maximum signal from scintillator. This activity is very important to realize practical application of our developed materials. Recently, piezoelectric material and high melting temperature alloy project is also started.
実用化イメージ

For the purpose of "real" contribution to human culture, we are always carrying out our research activity considering the industrial application. This point is unique feature of our attitude toward science.

Researchers

Institute for Materials Research

Akira Yoshikawa

Skeletal Regulation of Energy Metabolism

特徴・独自性
  • This project studies the influence of bone on energy metabolism in the body through health and disease.
実用化イメージ

This project may come up with new tools for metabolic syndrome prediction, therapy and diagnosis .

Researchers

Frontier Research Institute for Interdisciplinary Sciences

Aseel Mahmoud Suleiman Marahleh

Methods to Restore Strelity of Gramineous Plants under High- and Low-Temperature Stress Conditions

NEXT
PREV
特徴・独自性
  • Plant reproductive development is more sensitive than vegetative growth to many environmental stresses. High-temperature injury is becoming an increasingly serious problem due to recent global warming. In wheat, barley, and other crops, the early phase of anther development is most susceptible to high temperature. Oppositely, grain yields in rice plants are often reduced by exposure to low temperature. Unexpected climate change, such as abnormally hot or cool summer temperatures, have occurred repeatedly during recent years. This method indicates that an appropriate use of specific phytohormones, such as auxin and GA, may promote stress tolerance and adaptation to abiotic stresses.
実用化イメージ

These potentially novel functions of the classical phytohormones will be important sustainable agriculture in the face of global climate change.

Researchers

Graduate School of Life Sciences

Atsushi Higashitani

X-Ray Phase Imaging for High-Sensitive Non-Destructive Testing

NEXT
PREV
特徴・独自性
  • Conventional X-ray imaging methods that rely on X-ray attenuation cannot generate clear contrast in the observation of low-density materials such as polymers consisting of low-Z elements. However, the sensitivity to the materials can be improved drastically by X-ray phase imaging that detects X-ray refraction caused by the materials. X-ray Talbot or Talbot-Lau interferometry consisting of X-ray transmission gratings is now constructed in laboratories for X-ray phase imaging. X-ray phase tomography is also realized, enabling high-sensitive three-dimensional observation.
  • X-ray phase imaging can be utilized for X-ray non-destructive testing of industrial products and baggage that cannot be checked conventionally.
実用化イメージ

We aim at appending a phase-contrast mode to micro-CT apparatuses and developing screening apparatuses in production lines.

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Atsushi Momose