"E" Researcher - 5 Result(s)

E

 E

Development of the next generation anti-HIV agents

NEXT
PREV
特徴・独自性
  • HIV infection is one of most serious concern in infectious diseases. We will perform anti-HIV assays for unmet medical needs in control of HIV infections with established novel assays. We have developed reverse transcriptase inhibitor that has novel mechanism of inhibition, translocation-inhibition (J Biol Chem, 2009). Dr Kodama participated in the primary screening and development of a new HIV integrase inhibitor, elvitegravir (J Virol 2009), and a unique reverse transcriptase inhibitor, islatravir, which phase III clinical trials by the Merck & Co., Inc. will complete, soon. We have a representative resistant HIV strain-library for anti-HIV screening and several target oriented high through-put screening systems.
実用化イメージ

We can establish high through-put screening for new targets, so please consult with us individually. We are open to joint development requiring BSL3/P3 experimental facilities and academic guidance including other microorganisms.

Researchers

International Research Institute of Disaster Science

Eiichi Kodama

Development and evaluation of various inhibitors and disinfectants for SARS-CoV-2

NEXT
PREV
特徴・独自性
  • Using the infectious SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2), we are evaluating and developing new therapeutic drug candidates as well as evaluating disinfectants. Further analyses such as mechanism of action and resistance may be applicable. Other pathogens, including influenza virus and drug-resistant bacteria, will be examined upon request and discussion. Through joint and collaborative research with domestic and overseas pharmaceutical companies and related companies, we have experience of their clinical application including basic research.
実用化イメージ

We support development and evaluation of various inhibitors and disinfectants for variants of SARS-CoV-2 as well as wild type.

Researchers

International Research Institute of Disaster Science

Eiichi Kodama

Hydrogen embrittlement of high strength steels

NEXT
PREV
特徴・独自性
  • We are studying hydrogen embrittlement property of high strength steels from the aspects of both the effect of hydrogen on mechanical properties of high strength steels and hydrogen uptake behavior in corrosive environments. The topics of our study includes clarification of mechanism of hydrogen embrittlement of various steels, investigation of hydrogen entry caused by corrosion using electrochemical techniques, hydrogen visualization, proposing evaluation methods for hydrogen embrittlement property and so forth.
実用化イメージ

Collaborative research in the field of hydrogen embrittlement, for example, hydrogen embrittlement properties of high strength steels and the effects of metallographic structure and hydrogen traps, proposal of evaluation methods for hydrogen embrittlement property for some specific steel and for parts with specific shape, development of novel hydrogen visualization techniques.

Researchers

Institute for Materials Research

Eiji Akiyama

Programming Language Theory and Computation Models

NEXT
PREV
特徴・独自性
  • Our laboratory conducts leading research on programming language theory and high-level computation models. In particular, we focus on research and application of (general proof methods for) program equivalence, functional programing, and type systems (also known as lightweight formal methods), which are attracting revived interests in recent years. Our Japanese translation of "Types and Programming Languages" (Benjamin C. Pierce, University of Pennsylvania)---compiled in cooperation with engineers from top-level electronics and software companies in Japan---has become the 42nd bestseller (rather exceptional as an academic Publications) among new books in Amazon.co.jp. For more information, please see the Web page: http://www.kb.ecei.tohoku.ac.jp/~sumii
実用化イメージ

Our technology can be used for design and development of software artifacts, especially programming languages and tools including DSL (domain specific languages), as well as application of functional programming, type systems, or formal methods.

Researchers

Graduate School of Information Sciences

Eijiro Sumii

Yeast models of familial Alzheimer disease to screen for gamma-secretase inhibitors and modulators

NEXT
PREV
特徴・独自性
  • Using the yeast transcriptional activator Gal4 system, we reconstituted the production of amyloid beta (Aβ), responsible for Alzheimer disease. Aβ production could be monitored by the positive growth in the selection media or by the reporter enzyme (β-Gal). Utilizing familial Alzheimer disease mutants, we established a system to screen for mutations and chemicals that modulate gamma secretase activity and reduce toxic Aβ42.
実用化イメージ

Our yeast system can be used to screen for chemicals, natural products, food ingredients, genes, and mutations that modulate γ-secretase activity and block Aβ42 production specifically. We hope to conduct collaboration research with a willing company for a practical application of this technology in industry.

Researchers

Graduate School of Agricultural Science

Eugene Futai