Tohoku University. Research Profiles

LANGUAGE

"D" Theme - 73 Result(s)

D

 D

Development of next-generation sterilization method by a plasma flow at atmospheric pressure

NEXT
PREV
Features

Plasma sterilization has been developed as an alternative sterilization method due to its chemical activity, operation at low temperature and atmospheric pressure, low power consumption, low cost and safety. We have studied a mechanism of chemical species generation and transport in a plasma flow and, the sterilization efficacy and mechanism for several plasma sources at atmospheric pressure, such as a microwave plasma flow, a dielectric barrier discharge in a tube and a water vapor plasma flow. We already clarified that the damages of outer membrane and destructions of the cytoplasmic membrane of Escherichia coli by exposure to the microwave plasma flow. Fig. 1 shows the effect of plasma exposure on the E. coli. When the E. coli was exposed to the plasma, the height of the E. coli decreased and the potassium leakage of cytoplasmic material increased. For sterilization in a tube, we also clarified that an induced flow in the narrow tube by DBD transports chemical species and sterilize the whole inside surface of a tube as shown in Fig. 2. We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.

Institute of Fluid Science
SATO Takehiko, Professor Doctor of Engineering

Development of Novel Bone Substitute Biomaterials Showing Highly Osteoconductive Property

NEXT
PREV
Features

Novel bone substitute biomaterials should have a property not only to support cellular attachment on the material surfaces but also activate cellular function of osteoblasts that promote regeneration of bone tissue. Our laboratory successfully developed such materials composed of octacalcium phosphate (OCP) (Suzuki O et al. Dent Mater J 39:187, 2020. doi: 10.4012/dmj.2020-001), obtained by a restricted synthesis condition originally developed, with specific crystal characteristics, and various natural polymers, such as gelatin, collagen, alginate and hyaluronic acid. The materials consist from OCP and these polymers are capable of enhancing new bone formation concomitant with their own biodegradations. The concept to develop such materials is that (1) design of reaction of calcium phosphate ceramics and the synthesis; (2) design of material strength to meet the mechanical stress from living body; (3) selection of natural and synthetic polymer materials for the calcium phosphate ceramics.

Targeted Application(s)/Industry

We are prepared to provide academic consultations to companies interested in our research.

Division of Craniofacial Function Engineering, Graduate School of Dentistry
SUZUKI Osamu, Professor Doctor in Medical Sciencese

Development of Novel Scintillator and Piezoelectric Crystals

NEXT
PREV
Features

Our research target is mainly focused on the topic of development of novel scintillator crystals, piezoelectric crystals, growth technology, characterization and its device application.
We design and synthesize new materials from a view point of Crystal Chemistry, and investigate their structure and physical properties. We also study on photo-detector, as suitable photo-detector fully contribute to get maximum signal from scintillator. This activity is very important to realize practical application of our developed materials. Recently, piezoelectric material and high melting temperature alloy project is also started.

Targeted Application(s)/Industry

For the purpose of "real" contribution to human culture, we are always carrying out our research activity considering the industrial application. This point is unique feature of our attitude toward science.

Research Laboratory on Advanced Crystal Engineering, Institute for Materials Research
YOSHIKAWA Akira, Professor Doctor of Science

Development of Open Nanoporous Base and Half Metals, Metalloids and their Alloys

NEXT
PREV
Features

Nanoporous metals have drawn considerable attention due to their highly functional properties. They are generally produced by selective dissolution of elements from a multicomponent alloy (known as the dealloying method). As this method is based on differences in the electrode potential of each element present in the alloy, and this potential is high for noble metals, porous structure can be obtained only for noble metals. Recently we have found a new, simple and easy dealloying method without using aqueous solution, which enable us to develop an open nanoporous non-oxidized metallic material even with base metals (such as Ti, Ni, Cr, Fe, Mo, etc), metalloids and their alloys.

Targeted Application(s)/Industry

This technique is very powerful for developing new functional electrodes, catalysts, filters as well for removing toxic metallic element from the surface of biomaterials containing the toxic element.

Institute for Materials Research
KATO Hidemi, Professor PhD (Engineering)

Development of Optical Sysytems for Noninvasive Treatment and Diagnosis

NEXT
PREV
Features

Optical fiber-based endoscopic systems for non-invasive treatment and diagnosis are developed. The fiber transmits high-powered laser light for treatment and low-powered light for diagnosis. We develop treatment and diagnosis systems utilizing not only common glass-based optical fibers but hollow-optical fibers. Hollow optical fibers deliver high-powered infrared lasers and light with wide range of wavelength from ultraviolet and far infrared.

Targeted Application(s)/Industry

Our potential collaborators will be medical device manufactures, as well as any electronic device, communication device, and measurement instrument manufactures considering new entry to the field.

Graduate School of Biomedical Engineering
MATSUURA Yuji, Professor

Development of Passive Millimeter-wave Imaging Device for Practical Applications

NEXT
PREV
Features

Millimeter wave (MM-wave) which is one of the electromagnetic wave transparent the clothes, the fire and the wall etc. and all natural materials including objects in clothes always radiate the electromagnetic wave as the thermal noise. Using these characteristics of MM-wave, imaging of concealed objects in clothes can be accomplished in a noninvasive and noncontact manner. This technique is called Passive Millimeter Wave (PMMW) Imaging technique and we have developed a PMMW imaging device for security applications.

The wave length of MM-wave frequency range is from 1 mm to 10 mm and the spatial resolution of images in MM-wave range is low compared with sub-millimeter (terahertz) range or Infra-Red range, however, higher transmittance through clothes can be obtained compared with higher frequency range. Furthermore, low noise amplifier (LNA) exists which could be the advantage of MM-wave compared with higher frequency ranges.

Now the device was developed for the purpose of keeping safe and secure aircrafts and ships etc., we hope to conduct collaborative research with a willing company for a practical application of this technology in industrial fields such as the fire rescue, the police equipment and the medical devices.

Graduate school of Engineering
SATO Hiroyasu, Assistant Professor Doctor of Engineering

Development of PHD-Targeted Drug for Ischemic Injury

NEXT
PREV
Features

All the living organisms generate energy from molecular oxygen to maintain their own lives. Once the concentration of oxygen falls down, life activity gets severely hampered and it could sometimes cause death. Typical examples that are related to local hypoxia are ischemic heart disease, stroke and kidney disease.
We focus on the function of prolyl hydroxylase (PHD) as a sensor to detect the hypoxia, and we are developing drugs to treat ischemic injury by controlling hypoxia.

Targeted Application(s)/Industry

Currently, we have several compounds that inhibit the PHD. We want to commercialize in conjunction with pharmaceutical companies in Japan and overseas, advancing our non-clinical studies for clinical development.

Division of Molecular Medicine and Therapy, United Centers for Advanced Research and Translational Medicine (ART), Graduate School of Medicine
MIYATA Toshio, Professor M.D., PhD

Development of Potential Thermoelectric Materials

Features

We have been exploring novel thermoelectric materials. Functions of a solid substance primarily depend on the electronic structure, directly derived from its crystal structure. Through high-quality structure analyses using neutron and X-ray diffraction, combined with first-principles calculations, we have been fabricating materials with desired functions. To date, more than 40 novel materials have been discovered based on our guiding principles.

Targeted Application(s)/Industry

For developing future device technologies, challenges on thin-film thermionic multilayers and organic thermoelectric materials are currently underway.

Graduate School of Engineering
MIYAZAKI Yuzuru, Professor Doctor of Engineering

Development of preventive medicine for aortic aneurysm and dissection of Marfan syndrome

NEXT
PREV
Features

Marfan’s syndrome (MF) is a severe, systemic disorder of connective tissue formation. A variety of MFS therapies have been developed, including surgical therapy for aortic root aneurysm and dissection (AAD) that are life-threatening, traditional medical therapies such as β-adrenergic receptor or angiotensin II receptor blockers for slow aortic growth and to decrease the risk of AAD. However these treatments did not prevent tissue destruction in the AAD of MF. To develop preventive strategy for AAD, it will be necessary to identify molecular mechanisms of microfibril formation and an appropriate fibrillin-1 microfibril associated molecule. Recently, ADAMTSL6β, which is a microfibril-associated extracellular matrix protein contributes the regeneration of microfibril by promoting fibrillin-microfibril assembly. We try to develop ADAMTSL6β as a preventive medicine for AAD of MF by regeneration of fibrillin-1 microfibril assembly.

Targeted Application(s)/Industry

Graduate School of Dentistry, Division of Operative Dentistry, Department of Restorative Dentistry
SAITOU Masahiro, Professor Doctor of Dentistry

Development of Production System of Valuable Proteins Using a Koji-Mold, Aspergillus Oryzae, as a Host

Features

Because a koji-mold, Aspergillus oryzae, has an ability to secret a higher amount of proteins and is regarded as a safe microorganism, it has been expected as a promising host for production of useful proteins derived from plants and animals. However, Aspergillus oryzae produces various proteolytic enzymes that could degrade heterologous proteins produced, and hence we constructed mutant strains in which a transcription factor gene involved in proteolytic enzyme production was disrupted. In addition, codon optimization of heterologous gene resulted in a significant increase in the stability of heterologous gene transcripts. These attempts would lead to an increase in the amount of valuable proteins produced.

Targeted Application(s)/Industry

The technology could be applied to the high-level production of pharmaceutical proteins and industrially useful enzymes. We look forward to developing the collaborative project with enzyme and pharmaceutical industries.

Graduate School of Agricultural Science
GOMI Katsuya, Professor PhD

Development of Recombinant Inbred Mice with a Genetic Predisposition to Collagen Disease

NEXT
PREV
Features

Eleven strains of recombinant inbred (RI) mice derived from MRL/lpr and C3H/lpr mice were established. This RI is the only one in the world that randomly develops lesions such as nephritis, arthritis, sialadenitis, vasculitis, and production of autoantibodies in each strain. The genomes of the two strains of mice are randomly held in homozygous condition, and the phenotypes of each strain and the effects of administered drugs could be compared based on their genotype maps. It is possible to identify the regions of gene loci involved in the phenotype and drug sensitivity.

Targeted Application(s)/Industry

Development of diagnostic and therapeutic agents for autoimmune diseases. It can be applied to the elucidation of the mechanism of onset of immunological adverse events caused by immune checkpoint inhibitors and the development of drugs to prevent the onset of such events, and industry-academia collaboration with pharmaceutical companies, test reagent companies, etc. is possible.

Graduate School of Biomedical Engineering
KODAMA Tetsuya, Professor PhD (Engineering), PhD (Medicine)

Development of Recycling Technology for High-Water Content Sludge by Using Fiber Materials

NEXT
PREV
Features

The recycling rate of construction muds and sludge is very low because the water content of these muds is very high and direct reuse of them is very difficult. Therefore, a new recycling technology for high-water content sludge has been developed in this laboratory. This technology is called "Fiber-Cement-Stabilized Soil Method", and it uses fiber materials and cement. The main feature of this method is to mix the fiber materials with the sludge, and the fiber materials included in the soil produce several geotechnical merits.

Targeted Application(s)/Industry

The modified soils produced by this method can be used as ground materials for reinforced embankment of the river bank and soil structures because they have several features such as high failure strength, high failure strain high durability for drying and wetting and high dynamic strength.

Graduate School of Environmental Studies
TAKAHASHI Hiroshi, Professor Doctor of Engineering

Development of Renewable Energy Systems for Sustainable Development Society

NEXT
PREV
Features

Development of renewable energy systems as well as research on high efficient energy conversion systems is a key technology to solve the global-scale environmental destruction and energy problems. We are working on the research on the advanced technology of renewable energy such as solar energy and hydrogen. Topics of research are two of the following roughly separately. 
(1) Development of highly effective thermal energy systems and energy saving systems by using spectral control of thermal radiation. 
(2) Aiming at the achievement of the hydrogen energy society, we develop new energy conversion devices based on solid state ionics, and perform feasible studies for solid oxide fuel cells (SOFCs) based on mechanics of materials.

Targeted Application(s)/Industry

High temperature solar absorption materials
High effieciency solar-termophotovoltaic (STPV) system
Small power source for mobile electric devices based on micro-SOFC
New energy harvesting devices in harsh environment

Department of Mechanical Systems and Design, Graduate School of Engineering
YUGAMI Hiroo, Professor Doctor of Engineering

Development of Sensors and Measuring Systems for Ultra-Precision Manufacturing and Nanomanufacturing

NEXT
PREV
Features

The research is being focused on measurement of surface forms of precision workpieces and stage motions of precision machines, which are important items for ultra-precision manufacturing and nanomanufacturing. Optical sensors are being developed for measurement of angle and displacement, which are fundamental quantities for manufacturing. Technologies for improvement of the sensor sensitivity and bandwidth, reduction of the sensor size as well as new multi-axis sensing methods are being The research is being focused on measurement of surface forms of precision workpieces and stage motions of precision machines. Optical sensors are being developed for measurement of angle and displacement. A number of scanning-type measuring systems for precision measurement of surface forms and stage motions are also being developed. Error separation algorithms and systems for straightness and roundness, which are the most fundamental geometries treated in ultra-precision manufacturing, are being investigated. Novel systems based on scanning probe microscopy are under development for micro- and nano-structures as well as freeform optics in responding to new and important challenges from ultra-precision manufacturing and nanomanufacturing.

Targeted Application(s)/Industry

The multi-axis optical displacement and angle sensors developed in the laboratory are expected to measure motions of semiconductor/IC manufacturing and inspection equipment, precision machine tools, ultra-precision measuring instrument. The surface profile measurement systems are expected t play an important role in ultra-precision manufacturing and nanomanufacturing industries.

Department of Nanomechanics, Graduate School of Engineering
GAO Wei, Professor PhD

Development of Soft Magnetic Materials and Magnet Consisting of Complete Rare-Earth Free Elements Both with Ultimately-High-Efficient Types Contributing to Energy- and Resource-Saving by Precise Controlling their Nanostructures

NEXT
PREV
Features

Features and Originalities
Research activities include high functionalization and attachment of additional values to the soft magnetic materials of iron-group based metallic glasses, nanocrystalline and amorphous alloys and magnets, both from non-equilibrium alloys with useful properties that have not been achieved by conventional crystalline alloys. Recent successful results contain newly-developed nanocrystalline soft magnetic alloys with high saturation magnetic flux density of 1.8 Tesla or higher and low core loss of ~1/3 to that of the Silicon steels and fabrication of rare-earth free L10-FeNi magnets.

Possible Academic/Industrial Collaborations
The target materials possess high potential as industrial materials owing to Fe-based alloy with low material costs accompanied by rare-earth-free nature and to producibility in an air environment. Expectations are contributions to energy-saving, saving mineral resources and reducing carbon dioxide emissions through collaborations with companies dealing with materials and applications.

Targeted Application(s)/Industry

New Industry Creation Hatchery Center
MAKINO Akihiro, Professor Doctor of Engineering

Development of Solid-State-Ionics Materials for Energy Conversion, Storage and Utilization

NEXT
PREV
Features

Our focus is on the development of solid-state-ionics materials to be used for a variety of energy conversion systems. To further improve the performance of fuel cells and lithium batteries, novel ionic conductors and mixed conductors with high ionic conductivity and chemical stability are highly demanded. We have been developing such the materials based on defect chemistry and thermodynamics of ceramics, and trying to apply those materials to actual energy conversion devices.

Targeted Application(s)/Industry

To date, a hydrogen production system utilizing oxygen permeable membranes and an all-solid-state battery have been prepared.

Department of Materials Science, Graduate School of Engineering
TAKAMURA Hitoshi, Professor Doctor of Engineering

Development of Sustainable Integrated Multiphase Energy System

NEXT
PREV
Features

Our laboratory is focusing in the development of innovative multiphase fluid dynamic methods based on the multiscale integration of massively parallel supercomputing and advanced measurements, and research related to creation of environmentally conscious energy systems. Furthermore, we promote basic research for the creation of risk management science and associated new multiphase flow system directly linked to sustainable energy represented by a high-density hydrogen storage technology.

Targeted Application(s)/Industry

P2P Hydrogen supply chain, Elastohydrodynamic lubrication, Supercomputing of Laser melting and sputter particle formation, High pressure diecast computing / Automotive industry, Additive manufacturing

Institute of Fluid Science
ISHIMOTO Jun, Professor Doctor of Engineering

Development of Terahertz Semiconductor Devices Using Novel Nano-Heterostructures and Materials and their ICT Applications

NEXT
PREV
Features

Terahertz coherent electromagnetic waves are expected to explore the potential application fields of future information and communications technologies. We are developing novel, ultra-broadband integrated signal-processing devices/systems operating in the terahertz frequency regime employing novel semiconductor nano-heterostructures and materials. Frequency-tunable plasmon-resonant terahertz emitter and detectors and metamaterial circuits. By using an original dual-grating-gate high-electron mobility transistor (DGG-HEMT) structure with InP-based material systems record-breaking ultrahigh-sensitive detection and coherent monochromatic emission of terahertz radiation have been realized at room temperature. These devices work for terahertz imaging and spectroscopy.
Ultimately-fast terahertz transistors utilizing graphene, carbon-based new material, and compound semiconductor heterojunction material systems.
Graphene-based novel terahertz photonics devices, breaking through the limit on conventional technology. Recently we have succeeded in single-mode terahertz lasing in a dual-gate graphene-channel laser transistor device at 100K. Moreover, we have succeeded in room-temperature terahertz coherent amplification in a dual-grating-gate graphene channel transistor promoted by current-driven graphene Dirac plasmon instability. The obtained maximal gain of 9% is four times as high as the quantum efficiency limit when terahertz photons interact directly with graphene electrons without excitation of graphene plasmons. These will be big steps towards realization of an intense, room-temperature operating graphene plasmonic terahertz laser transistors.

Targeted Application(s)/Industry

By making full use of these world-leading device/circuit technologies, we are exploring future ultra-broadband 6G- and 7G-class wireless communication systems as well as spectroscopic/imaging systems for safety and security. We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.

Research Institute of Electrical Communication
OTSUJI Taiichi, Professor Doctor of Engineering

Development of the cyclotron accelerator and its application

NEXT
PREV
Features

We develop technology of the cyclotron accelerator and its application as follows. 1)Ion source (particularly heavy ion source), 2)design of ion optics, 3)device control system for the cyclotron, 4)RF system, 5)detectors for charged particles, gamma ray, and neutron, 6) radiation test by ion and neutron beam.

Targeted Application(s)/Industry

We have beam lines dedicated to the neutron irradiation and the ion irradiation, respectively. We can provide fast neutron beam (20-70 MeV), and various ion beam such as p, alpha, and heavy ions up to Xe. We also develop a neutron imaging technique using fast neutron.

Cyclotron and Radioisotope Center
ITOH Masatoshi, Professor PhD