"D" Theme - 63 Result(s)

 D

Data Analytics for Creation of Social Values

NEXT
PREV
特徴・独自性
  • My research field is a data analytics for creation of social values by data science approaches. In modern society, we can observe various data sets about our daily life, business or community. I aim to create new services for it using such data set and methods of Bayesian modeling, data mining or machine learning.
実用化イメージ

Researchers

Graduate School of Economics and Management

Tsukasa Ishigaki

Design and control of new weld interface during welding of dissimilar materials

NEXT
PREV
特徴・独自性
  • Welding of dissimilar materials is an important process to manufacture the future structures and devices, but it is hard to produce the high-performance welds because the excessive reaction at the weld interface deteriorates the weld properties. Our group attempts to develop the new dissimilar welding process to yield the new interface with the aimed properties through design and control of interfacial reaction as well as usage of solid-state welding processes, such as friction stir welding and ultrasonic welding.
実用化イメージ

We hope to have collaborative researches with willing companies for practical application of welding of dissimilar materials, including metal/metal and metal/thermoplastic composite, in transportation, infrastructure, and energy industries.

Researchers

Graduate School of Engineering

Yutaka Sato

Design and Development of 50 kg-class Micro Satellites

NEXT
PREV
特徴・独自性
  • We design and develop micro satellites in a format of 50 cm cubic size and 50 kg mass. We have developed the first and second micro satellites of Tohoku University, named “RISING” and “RISING-2”, launched by using JAXA’s H-IIA rocket vehicle in January 2009 and May 2014, respectively. Both satellites are operated from our ground station in the university. Particularly, RISING-2 has succeeded in capturing high precision color images of the Earth's surface at a spatial resolution of 5m, the highest in the world among 50kg-class satellites. Now the third micro satellite for international science mission is under the development. In addition, we are active in nano satellite development. The first nano-sat “RAIKO” in a 10 by 10 by 20 cm format was launched from the International Space Station in 2012. More nano-sats are under the development.
実用化イメージ

We would like to make innovation in space business by introducing a new paradigm for rapid and low cost development of space systems for various missions of remote sensing, earth observation, and space exploration. We have rich experience in the development of spacecraft bus systems, onboard avionics systems and mission instruments. Collaborations with technology and business partners are welcome.

Researchers

Graduate School of Engineering

Kazuya Yoshida

Design and Fabrication of Micro-Optical Devices Based on Optics, Especially Optical MEMS and Sensors

NEXT
PREV
特徴・独自性
  • On the basis of optical engineering, optical technologies for sensing mechanical motion, spectroscopic properties, and other physical/chemical characteristics are investigated. Moreover, using semiconductor micro/nano-fabrication technology, integrated micro-optical sensors, micro/nano optical systems, optical micro-electro-mechanical systems (MEMS) are studied. Micro laser scanner for display, deformable mirror for telescope, optical displacement encoder, and fluorescent analysis system are the examples of research topics.
実用化イメージ

Optical design, Optical industries, Industries relating to semiconductor micro fabrication and MEMS, optical telecommunications, etc.

Researchers

New Industry Creation Hatchery Center

Kazuhiro Hane

Design, fabrication and test of high performance miniaturized sensor and actuator systems

NEXT
PREV
特徴・独自性
  • Micro and nano electro-mechanical systems (MEMS/NEMS) have completely changed human society in the past decades. Many devices that are taken for granted these days like smart phone, future car and drone would be unthinkable without them.
  • The integration of various new kinds of materials, such as metallic glass and nanostructures into micro technologies allows us to create devices with novel performance and characteristics; examples include acoustic sensors and actuators, thermoelectric generators and wafer level packages.
  • In collaboration with partners inside and outside Tohoku University, technologies are being developed that can be transferred to industry ranging from material integration and processes to packaging and reliability.
実用化イメージ

Wide collaboration in Microsystem technology is possible. We develop, implement and optimize processes, devices and systems until they are ready for use, keeping in mind reliability, yield and other important features for commercialization. We work with also with partners, such as Fraunhofer. Flexible interlinking of expertise and capacities with other research groups enables us to meet broad project requirements and create complex system solutions.

Researchers

Micro System Integration Center

Froemel Joerg Eckhardt

Developing energy creation and saving materials

NEXT
PREV
特徴・独自性
  • Most innovations have been triggered by advent of new materials. We focus on to explore new inorganic materials and their synthesis routes on the basis of our knowledge about the material design and various materials processing technologies. We develop proton conducting phosphate glasses working at intermediate temperatures and narrow gap oxide semiconductors applicable in visible and NIR regions. Thin-film solar cells, fuel cells using those materials are also developing.
実用化イメージ

We focus on oxide semiconductors and proton conducting electrolytes and electrodes in order to apply them in solar cells, fuel cells, light-emitting devices. But, applicable area of our technologies is not limited in those applications.

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Takahisa Omata

Development and evaluation of various inhibitors and disinfectants for SARS-CoV-2

NEXT
PREV
特徴・独自性
  • Using the infectious SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2), we are evaluating and developing new therapeutic drug candidates as well as evaluating disinfectants. Further analyses such as mechanism of action and resistance may be applicable. Other pathogens, including influenza virus and drug-resistant bacteria, will be examined upon request and discussion. Through joint and collaborative research with domestic and overseas pharmaceutical companies and related companies, we have experience of their clinical application including basic research.
実用化イメージ

We support development and evaluation of various inhibitors and disinfectants for variants of SARS-CoV-2 as well as wild type.

Researchers

International Research Institute of Disaster Science

Eiichi Kodama

Development of a Novel Quantification Method for Diarrhetic Schell Fish Poisoning

特徴・独自性
  • We have investigated isolation and structure determination of natural products and evaluated mode of their actions. We have especially focused on marine natural products causative for a food poisoning, diarrheic shellfish poisoning (DSP), which has spread worldwide and threatened regional fishery industry. Dinophysistoxin produced by the dinoflagellate Dinophysis spp. and okadaic acid, are thought to be responsible for DSP. Acute toxicity test using mice has been the primary method for detection of DSP in the fish market, though an alternative method to quantify DSP without sacrificing mice has been requested. We isolated OABP2, a novel okadaic acid binding protein, from the marine sponge Halichondria okadai and succeeded in expression of the recombinant OABP2 in E. coli, which eventually showed high affinity to the DSP toxins.
実用化イメージ

We are now working on visualization of OA by utilizing OABP2 in order to provide an easy and quick quantification method for DSP.

Researchers

Graduate School of Agricultural Science

Keiichi Konoki

Development of a novel therapeutic drug, TMS-007, for acute cerebral infarction

特徴・独自性
  • The currently approved fibrynolytic therapy is only alteplase, but the use of it has been limited to 5% of patients with acute cerebral infarction due to possible side effects including hemorrhagic infarction that may be life-threatening. TMS-007 is a novel drug that has both fibrynolytic activity and brain protective effects. The aim of this project is to perform a clinical trial of this drug and to further achieve a commercial-based clinical use. We believe that this drug would contribute significantly in the treatment of acute cerebral infarction.
実用化イメージ

Researchers

Administrative Staff

Teiji Tominaga

Development of a Novel Therapy for Amyotrophic Lateral Sclerosis (ALS) Using Hepatocyte Growth Factor (HGF)

NEXT
PREV
特徴・独自性
  • Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by systematic motor neuron degeneration. Approximately 20% cases of familial ALS are caused by mutations in the superoxide dismutase 1 (SOD1) gene. We developed transgenic rats that express a human SOD1 gene with two different ALS-linked mutations (G93A or H46R) showing progressive motor neuron degeneration and paralysis. The larger size of the rat ALS models as compared with existing mouse models will facilitate studies on neuroprotective and neuro-regenerative strategy involving manipulations of cerebrospinal fluid and spinal cord.
実用化イメージ

Hepatocyte growth factor (HGF) is one of the most potent survival-promoting factors for motor neurons. Continuous intrathecal infusion of human recombinant HGF (hrHGF) attenuated loss of spinal motor neurons, astrocytosis, and microglial activation, leading to prolonged survival in the ALS rats. Safety and toxicology testing of the hrHGF protein in non-human primates should prompt further clinical trials in human ALS patients.

Researchers

Graduate School of Medicine

Masashi Aoki

Development of a Numerical Prediction System for Sliding Part Wear and Seizure Occurrence Portions

NEXT
PREV
概要

Focusing on the lubricant film flow with phase change between the engine piston pin and connecting rod small end, we developed a new multiphase fluid-structure coupled analysis method that takes into account elastic deformation of the structure and flow path changes and developed a simulation prediction method for tribological properties under high load conditions. The simulation prediction method for tribological properties under high load conditions has been created. As a result, we succeeded in simulation prediction of the wear/seizure generating areas in sliding parts. We discovered that the peculiar deformation behavior of the components is the cause of wear/seizure.

従来技術との比較

It has been thought that computational prediction is impossible to verify the wear and seizure locations in fluid lubrication. Still, this study succeeded in the simulation prediction of wear and seizure locations in sliding parts.

特徴・独自性
  • Numerical prediction of the wear and seizure locations in the sliding parts of engine piston pins was successfully performed.
  • The bow-like deformation of the piston pin was identified as the cause of mechanical contact and seizure at the connecting rod edge.
  • A three-dimensional multiphase fluid-structure coupled analysis method has been successfully developed, considering the piston pin's elastic deformation and connecting rod and thin-film cavitation1 lubrication with unsteady flow path changes.
実用化イメージ

This research method applies to automotive engines and all sliding component elements using fluid lubrication. It contributes to damage prediction and the development of safety guidelines for transportation and industrial machinery components, enabling the optimal design of components.

Researchers

Institute of Fluid Science

Jun Ishimoto

Development of a reaction process in supercritical water

NEXT
PREV
特徴・独自性
  • We are developing a new continuous flow type process for supercritical reactions. Under the supercritical state, the organic molecules and metal salt aqueous solutions are miscible and water molecule works as an acid/base catalyst which leads to rapid reactions. In order to apply such new reaction fields to an industrial process, it is necessary to establish the process design basis by understanding phenomena in the reaction fields, on the basis of phase equilibrium, flux and reaction kinetics theory. So while developing a process, we are doing research for the establishment of the process design basis.
実用化イメージ

Examples are a process for the synthesis of organic modified nanoparticles (MPs), a process for the pretreatment and solubilization of biomass in the supercritical/subcritical water and a process for the refinery of heavy oil in the supercritical water.

Researchers

Advanced Institute for Materials Research

Tadafumi Ajiri

Development of Advanced Device and Process Technologies and New Image Sensors

NEXT
PREV
特徴・独自性
  • Toward the ultimate performances of image sensors, advanced research activities are being conducted that cover a wide range of technology fields from cleanroom infrastructure, materials, process equipment, process, device, circuit, assembly, signal processing, measurement/evaluation and reliability. Following technologies have been successfully commercialized:
  • A fast and accurate measurement technology of electrical characteristics for over 1 million transistors
  • A wide dynamic range CMOS image sensor technology capturing images over five decade brightness ranges
  • An ultra-fast CMOS image sensor technology with 10 million frames/sec
実用化イメージ

Followings are available for industry collaborators:
A. 200mm-diameter-wafer silicon device fabrication utilizing the ultra-clean facility including wafer mutual fabrication processing between device manufacturers.
B. Process technology development and various kinds of analyses.
C. Development of new image sensors.

Researchers

New Industry Creation Hatchery Center

Shigetoshi Sugawa

Development of an Industrial Instrument / the Medical Equipment Using the Contactless Power Transmission System

NEXT
PREV
特徴・独自性
  • Using a non-contact power transmission technique, we develop an industrial instrument and the medical equipment. In the industrial instrument, we deal with the wide non-contact electricity transmission of the dozens of kW class from mW class from a small size electric apparatus represented by a cell-phone to the factory carrier device. In addition, we develop the contactless electricity transmission to an artificial heart (TETS) and a functional electrical stimulator (FES) aiming at the exercise of limbs inconvenience person function rebuilding mainly in the medical equipment.
実用化イメージ

We develop soft-heating hyperthermia using the small implantation element which does not need an internal temperature measurement as cancer treatment.

Researchers

International Research Institute of Disaster Science

Hidetoshi Matsuki

Development of an intranodal administration method

NEXT
PREV
特徴・独自性
  • (1) The amount of anticancer drug required to treat one metastatic lymph node is 1/1,000 to 1/10,000 of the systemic dose.
  • (2) The drug can be administered into the lymph node under ultrasound guidance.
  • (3) An international patent has been filed for the solvent of the administered drug.
実用化イメージ

1. Treatment and prophylactic therapy of affiliated lymph nodes in head and neck cancer, breast cancer, etc.
2. Pharmaceutical companies aiming to develop drugs by drug repositioning and generics
3. Medical device manufacturers aiming to develop a dosing system

Researchers

Graduate School of Biomedical Engineering

Tetsuya Kodama

Development of anti-fibrotic therapies with a cell line from myofibroblasts of fibrotic kidneys

NEXT
PREV
特徴・独自性
  • There are serious unmet medical needs in kidney diseases. Since fibrosis is a common terminal pathology of various kidney diseases and closely related to renal failure, anti-fibrotic therapies are plausible strategies for kidney diseases. Kidney fibrosis progresses with the emergence of myofibroblasts which produce extracellular matrix. We demonstrated that myofibroblasts originate from renal interstitial fibroblasts, which produce the erythroid growth factor erythropoietin, and that the transformation is reversible. To elucidate mechanisms of kidney fibrosis, we have established a cell line derived from myofibroblasts of mouse kidneys. It has been demonstrated that epigenetic interventions restore the cells (Replic cells) to their original fibroblastic features.
実用化イメージ

Replic cells provide useful and precise strategies to identify anti-fibrotic drugs.

Researchers

New Industry Creation Hatchery Center

Norio Suzuki

Development of Atom-scale Spectroscopy Measurement for Nano Materials

NEXT
PREV
特徴・独自性
  • Scanning tunneling microscope (STM) and atomic force microscope (AFM) are among a few microscopes which enable a direct observation of atomic scale structures of materials. If compared with other electron microscope like transmission electron microscope (TEM), the energy of the electron used for STM is very low that has a big advantage of low damage for sample. Thus STM and AFM are regarded as the most important tools to characterize materials in nanotechnology. The research is now developing from a mere observation of the shape of material to the characterization specific properties of materials with an atomic scale resolution. These properties include spin and molecule vibration; well established techniques like ESR/NMR and infrared-spectroscopy requires more than billions of molecules to obtain data, while STM can obtain these data for a single molecule.
  • We are interested following issues and like to have a collaboration with industrial companies.
  • 1. Molecule-scale morphological characterization of soft-material, polymers and bio material.
  • 2. Site specific vibration spectroscopy of molecules with an atomic resolution.
  • 3. Single spin detection with ESR-STM method
  • 4. Developing atom-scale characterization tool
実用化イメージ

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Tadahiro Komeda

Development of Biomedical Micro/Nano Integrated System Using LSI Technology

NEXT
PREV
特徴・独自性
  • Semiconductor neural engineering is a discipline that uses semiconductor process/device/circuit technologies to further understand properties of neural systems and to create novel fusion systems of living body and machine.
実用化イメージ

One of the goals in this laboratory is to establish semiconductor neural engineering and develop biomedical micro/nano integrated systems.
Another goal is to educate the next generation of leaders in biomedical engineering through research including:
1. Intelligent Si neural probe and biomedical signal processing LSI
2. Fully-implantable retinal prosthesis system
3. Bio/nano technology and novel Bio-FET sensor
4. 3-dimensional integration technology and analog/digital LSI design

Researchers

Graduate School of Biomedical Engineering

Tetsu Tanaka

Development of catalytic reaction system for direct synthesis from CO2 and diols

NEXT
PREV
特徴・独自性
  • We found an effective catalyst system composed of CeO2 and 2-cyanopyridine for direct and catalytic polycarbonate formation reaction from CO2 and diols. CeO2 acted as an activator for CO2 and diols, and 2-cyanopyridine shifted the equilibrium in favor of the product side by hydration of 2-cyanopyridine, promoting the reaction. Green polycarbonates can be synthesized by combination of the catalyst system with a technique of diol syntheses from biomass.
実用化イメージ

This catalyst system is effective for direct transformation of CO2, contributing to the effective utilization and emission reduction of CO2. Combination of the catalyst system with a concentration technique of CO2 will bring about much advantage.

Researchers

Graduate School of Engineering

Keiichi Tomishige

Development of Compound Semiconductor Radiation Detectors

NEXT
PREV
特徴・独自性
  • The main research subject of our group is developing material purification methods, crystal growth methods and detector fabrication technologies for compound semiconductor radiation detectors. Our group intensely studies a compound semiconductor, thallium bromide (TlBr), for fabrication of gamma-ray detectors for the advanced radiation applications. The attractive physical properties of TlBr lie in its high atomic number (Tl: 81, Br: 35), high density (7.56 g/cm3) and wide bandgap (2.68 eV). Due to the high atomic number and high density, TlBr exhibits high photon stopping power. The wide bandgap of TlBr permits the device low-noise operation at and above room temperatures.
実用化イメージ

Our group focuses on development of compound semiconductor radiation detectors for advanced radiation applications including ultra-high resolution PET systems, ultra-high resolution SPECT systems, photon counting CT systems and Compton cameras. We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.

Researchers

Graduate School of Engineering

Keitaro Hitomi