登録されている研究者 433人(研究テーマ422件)

人工知能を用いたタンパク質の機能設計:酵素・診断・医薬の設計アシスト

前の画像
次の画像
特徴・独自性
  • 2018年にノーベル化学賞となった進化分子工学の発展により、設計せずとも、目的機能をもつタンパク質を創りだすことが可能になってきた。しかし、アミノ酸配列が取りえる組み合わせ数(配列空間)の中から目的タンパク質を見つけだす確率は満足のいくものでない。我々は、機械学習を進化分子工学に利用することで、進化分子工学がもつ最も深刻な「配列空間問題」を解決し、確実に目的の機能へたどり着く技術を開発した。
実用化イメージ

酵素や抗体などのタンパク質の機能・特性を改善したいタンパク質をもっている製薬・診断・食品企業などの企業。特に、複数の特性を同時に向上させいタンパク質を持っている企業。

研究者

大学院工学研究科

梅津 光央  

Mitsuo Umetsu

巨大磁歪材料の探索と電子状態の実測による磁歪発現機構の解明

前の画像
次の画像
概要

振動発電、アクチュエータ、位置センサ等に磁歪現象が利用されていますが、巨大磁歪材料の磁歪発現機構は解明されていません。そのため、単結晶を作製して磁歪の符号・大きさ、電子状態について結晶方位依存性を測定して磁歪の発現機構を研究しています。電子状態は放射光を用いて共鳴非弾性X線散乱(RIXS)とX線磁気円二色性(XMCD)で測定しています。

従来技術との比較

巨大磁歪材料の磁歪発現機構は解明されておらず、電子状態直接観測と結び付けた研究はありません。

特徴・独自性
  • Fe-Ga系巨大磁歪材料のブリッジマン法等による単結晶試料の作製。
  • 放射光を用いた磁性材料の電子状態の直接的な測定。
  • 磁歪特性と電子状態の結晶方位依存性の測定から巨大磁歪の発現機構の解明。
  • 磁歪の発現機構に基づく材料探索と結晶方位等の組織制御。
  • 輸送特性(電気抵抗や磁気抵抗)の異方性と電子状態との関連付け。
実用化イメージ

巨大磁歪の発現機構を理解して結晶方位等の組織を制御することで、磁歪デバイスの高性能化が期待できます。

研究者

金属材料研究所

梅津 理恵  

Rie Umetsu

機能性磁性材料の探索と電子状態の実測に基づく機能推定

前の画像
次の画像
概要

省電力デバイスとして研究開発が行われているスピントロニクス材料に用いられている反強磁性合金の研究や、性能向上が期待できるハーフメタルであるホイスラー合金材料の探索研究(完全補償型フェリ磁性材料も含む)を行っています。電子状態は放射光を用いて共鳴非弾性X線散乱(RIXS)とX線磁気円二色性(XMCD)で測定し、理論計算との比較から構造と機能の推定を行います。

従来技術との比較

反強磁性合金やホイスラー合金の電子状態観測の研究は少なく、放射光を用いることで直接的に測定ができるようになりました。

特徴・独自性
  • 理論計算で予測された材料系について金属学的な知見を基にして材料探索。
  • 高周波溶解法、アーク溶解法、液体急冷法、ガスアトマイズ法等を駆使して反強磁性材料およびホイスラー合金材料の結晶試料を作製。
  • 放射光を用いた磁性材料の電子状態の直接的な測定。
  • 測定した電子状態から材料本来の構造と機能の理解。
  • 量子ビームを用いた磁性材料分析についての知見。
実用化イメージ

反強磁性合金やホイスラー合金の電子状態から、スピントロニクスデバイスに適用した時に期待される特性と課題を推測することで、省電力デバイスの特性向上に貢献できます。

研究者

金属材料研究所

梅津 理恵  

Rie Umetsu

iPS細胞の腫瘍化を抑制することが可能な分化誘導方法

特徴・独自性
  • 本発明は、スタチン系薬剤を用いることにより、iPS 細胞の移植に際して問題となる腫瘍化を抑制する技術である。スタチン系薬剤は、すでにコレステロール低下薬として広く普及している。iPS細胞の移植先における腫瘍化は、iPS細胞の再生医療応用への最大の課題のひとつであるが、細胞ソーティングなどの煩雑な手技を経ずに、スタチンを用いるだけでこの腫瘍化の課題が解決することができれば、iPS 細胞を用いた骨再生医療の実現へ大きく前進することが期待される。
実用化イメージ

本発明は、医科・歯科領域で重要な骨組織再生技術をiPS細胞を用いて可能にすることが想定される。

研究者

大学院歯学研究科

江草 宏  

Hiroshi Egusa

口腔粘膜由来細胞を利用したiPS細胞の効率的な製造方法

特徴・独自性
  • 本発明は、患者への負担が少なく、しかも高い樹立効率でiPS 細胞を作製する技術を提供することを目的とする。より詳細には、本発明は、口腔粘膜(歯肉)由来の体細胞を利用することによって、誘導多能性幹細胞を高い樹立効率で製造する方法に関する。更に、本発明は、当該製造方法によって作製された誘導多能性幹細胞に関する。
  • また、歯肉由来の細胞を用いることで、iPS 細胞の作製の際にウイルスを用いずに外来遺伝子挿入のないヒトiPS 細胞を、効率的に樹立することが可能である。さらに、ヒト以外の異種成分を含まない培養系を確立するために、iPS 細胞源である同一患者由来の歯肉由来細胞が自己フィーダー細胞として好適であることも明らかにしており、本発明技術を基盤とした移植に安全なiPS 細胞技術が確立されつつある。
実用化イメージ

本発明技術を用いて個々の患者の歯肉から効率的にiPS細胞を作製することによって、医科・歯科領域で期待されているオーダーメイドの再生医療が、より容易かつ効率的となることが想定される。

研究者

大学院歯学研究科

江草 宏  

Hiroshi Egusa

破骨細胞が関与する疾患の予防剤又は治療剤

特徴・独自性
  • 我々は破骨細胞の活性を指標としたライブラリースクリーニングの研究により、ニコチン性アセチルコリン受容体(nAChR)の阻害薬が破骨細胞分化を抑制することを明らかにし、その中でも特にα7-nAChRの拮抗作用をもつmethyllycaconitine(MLA)等の選択的拮抗薬が、破骨細胞分化を効果的に抑制することを見出した。本発明は、この知見に基づき完成されたものであり、破骨細胞分化抑制剤、破骨細胞による骨吸収抑制剤、骨再生促進剤、及び骨吸収性疾患の予防又は治療剤、並びに破骨細胞分化促進剤、及び破骨細胞の機能低下に起因する疾患の予防又は治療剤等を提供する。
実用化イメージ

本発明は、破骨細胞分化を制御する受容体(α 7-nAChR)をターゲットとした強い特異的効果をもつ新薬に繋がる可能性が期待される。今後、α7-nAChRの選択的拮抗薬が、骨粗鬆症、関節リウマチにおける骨吸収を阻害する薬剤の開発に多大な貢献をすることが期待される。また、歯科では、歯周病における炎症性骨吸収の治療薬や、抜歯後の歯槽骨吸収を抑制する治療に貢献する可能性が考えられる。

研究者

大学院歯学研究科

江草 宏  

Hiroshi Egusa

iPS細胞の腫瘍化を抑制することが可能な骨分化誘導方法

前の画像
次の画像
概要

iPS細胞の腫瘍化を抑制することが可能な骨分化誘導方法
https://www.t-technoarch.co.jp/data/anken_h/T18-512.html

従来技術との比較

特徴・独自性
  •  iPS細胞の移植先における腫瘍化は、iPS細胞の再生医療応用への最大の課題のひとつである。本発明はスタチン系薬剤を用いることにより、骨再生におけるiPS細胞の移植に際して問題となる腫瘍化を抑制する技術であり、細胞ソーティングなどの煩雑な手技を経ずに腫瘍化の課題解決に資するため、iPS細胞を用いた骨再生医療の実現へ大きく前進することが期待される。
実用化イメージ

多様な骨関連疾患への展開が可能

研究者

大学院歯学研究科

江草 宏  

Hiroshi Egusa

金ナノ粒子と生理活性天然物を利用したセンサー物質開発研究

前の画像
次の画像
特徴・独自性
  • 金ナノ粒子を使用した検査薬の担持物質として、これまではタンパク質(レクチン等)や単純な有機化合物が使用されてきた。一方、生理活性天然物は医農薬指向で研究されてきたが、多様な作用機構を応用すれば検査薬に使用可能と考えられる。これらの性質を組み合わせることで新奇センサー物質の創成が可能と予想される。
実用化イメージ

生理活性天然物の活性発現機構に着目することで、従来技術(抗体等)では検出が難しかった物質(低分子化合物・金属イオン等)の検出が可能になると期待できる。

研究者

大学院農学研究科

榎本 賢  

Masaru Enomoto

AIチップが切り拓く賢い省エネと安全の輸送技術

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 遠藤研究室では、これまで提案し研究してきた高効率のパワーデバイス&パワー制御回路技術、スピン素子を融合した極限省エネな知的集積回路&パワーマネジメント技術、3次元構造デバイスによる極限集積システムのための新規材料プロセス技術(プラットフォーム構築)をコア技術として、パワーエレクトロニクスと知的ナノエレクトロニクスの融合技術へと発展・展開させ、更なる高性能化と省エネ化の両立という社会的要請に応える新しいグリーンパワーエレクトロニクス領域を創出することを目指しシステムアーキテクチャ、回路、デバイス、CADまでの研究・開発を、一貫して行っています。
実用化イメージ

省エネデバイスとパワーデバイス及びその集積回路技術をコアとして、革新的な高効率エネルギー変換、高度パワーマネジメントの創出を目指し研究開発しています。興味のある企業や団体との共同研究を希望します。

研究者

大学院工学研究科

遠藤 哲郎  

Tetsuo Endoh

新奇な量子物性を示す強相関電子物質の開発

前の画像
次の画像
特徴・独自性
  • 強相関電子系とは、クーロン斥力により強く相互作用する電子集団のことです。私たちは、物質合成と物性測定を相乗させることで、強相関電子系が示す新奇な量子物性を開拓しています。高圧合成法を含む様々な固体化学的手法を駆使することで物質を合成し、得られた試料の電気的・磁気的・熱的・光学的な物性を評価しています。さらに、極限環境や量子ビームを活用した特殊な計測も推進しています。こうした物質合成を基盤に据えた総合的な実験研究を通して、超伝導・磁性・トポロジカル秩序などの強相関量子物性を探求しています。
実用化イメージ

強相関電子系は、巨視的スケールで量子効果が現れることで、劇的な機能を示します。大きなエネルギースケールを有する遷移金属化合物は、次世代テクノロジーの基盤材料としての可能性を秘めています。

研究者

大学院理学研究科

大串 研也  

Kenya Ohgushi

触覚・触感センサの開発に関する研究

前の画像
次の画像
特徴・独自性
  • 触覚・触感は、粗骨感、硬軟感、乾湿感、温冷感などの基礎感覚やその組み合わせの複合的な感覚であるが、これらの感覚は力、ひずみや温冷情報、粘性、振動などの情報で表現できると考えられる。これまで、ヒトの感覚受容器に対応させた触覚センサと触動作を模したセンサ機構を統合した能動型触覚センサシステムを開発し、種々の感性ワードや粗さ、柔らかさや温冷感の測定が可能となるシステムを実現した。また、触覚・触感はこれらの感覚に加え、その組み合わせなどもあり、メカニズムの解明は、センサの開発において重要である。本研究ではこれまで得られた基礎的な感覚やその他の感覚の関係、またその感覚取得に関連する物理情報等、触覚・触感のメカニズムを明らかにし、高機能な触覚・触感情報を可能とするセンサシステムの開発をする。
実用化イメージ

ライフサイエンスのみにとどまらず、香粧品業界や繊維等の業界の他にも一般メーカーなども対象となり、ものづくりの分野で有効である。

研究者

大学院医工学研究科

田中 真美  

Mami Tanaka

紙おむつ着用時に人肌がおむつから受ける触刺激の定量的な計測

前の画像
次の画像
概要

紙おむつ着用時に人肌がおむつから受ける触刺激の定量的な計測
https://www.t-technoarch.co.jp/data/anken_h/T09-013.html

従来技術との比較

特徴・独自性
  •  ヒトの肌に触れる下着やオムツ、ナプキンなどが接触することによる擦れや押しつけなどの刺激(触刺激)を評価することは、衣類の設計上重要である。触刺激の評価では、試着や腕などの代替部位への擦りつけ評価などが行われているが、評価者の個人差や体調の影響を受けるため、客観的な評価手法が必要である。
  •  オムツを例にあげると、利用者が乳幼児であることから、アンケートによる調査が不可能であり、オムツかぶれの原因の一つとされる触刺激を評価することがこれまで不可能であった。そこで本発明は、オムツ着用時の触刺激の定量化を可能とする触刺激センサを提供するものである。
実用化イメージ

下着やおむつ、生理用ナプキンなどの衣類の試作・設計・改良

研究者

大学院医工学研究科

田中 真美  

Mami Tanaka

父親の精子検体を検査することで、子供の自閉症スペクトラム発症率を予測できる。

前の画像
次の画像
概要

自閉症スペクトラムマーカー:
精子のヒストン修飾を測定することにより、次世代の神経発達症リスクを予測することが可能となりうる。
https://www.t-technoarch.co.jp/data/anken/T14-105.pdf

従来技術との比較

子どもの発達障害発症に関して、もっとも高いリスクは両親の加齢と早産であることが知られており、両親のうち父親の加齢の方が母親よりもリスクが高いことも繰り返し疫学的に報告されている。従来、精子の検査は、顕微鏡下で、精子数、形態、運動性をチェックするのみであり、分子レベルでの検査は行われていない。本発明はエピジェネティックな分子マーカーに着目する画期的な方法である。

特徴・独自性
  • 急激な少子化の一方、発達障害は増加の一途を辿っている
  • 父加齢の継世代的影響として、可塑性のあるエピジェネティック分子に着目
  • 精子検査は非侵襲的に行うことができる
  • 精子ドナー等のクォリティチェックとして適している
実用化イメージ

本発明の精子のヒストン修飾や、関連するエピジェネティック因子(DNAメチル化、マイクロRNA)を組み合わせて、精子のパネル検査を行うことにより、精度の高い精子のクォリティ検査を行うことが可能となる。

研究者

大学院医学系研究科

大隅 典子  

Noriko Osumi

全てを最適化する Optimal Society

前の画像
次の画像
特徴・独自性
  • 量子アニーリングと呼ばれる最適化技術を世界でいち早く産業化に向けて、その限界を突破する基礎技術、複数の企業との応用可能性の探索に取り掛かっている。
  • その手法の優位性は、一度最適化したい目標を描くコスト関数を定式化するだけで利用できる点だが、我々はさらに最適化しやすい形、学習による逐次最適化、ブラックボックス最適化など、手法にとどまらない展開をしている。
  • 特に自動運転、工場内の物流、災害時の避難誘導へ応用展開中である。
実用化イメージ

各種車両の自動運転、災害時の避難経路誘導などの経路探索問題、工程スケジューリングや多大な組合せ問題への応用。
各業界における組合せ最適化問題への課題解決方法を提供可能。
( 交通・流通、製造、材料、創薬等)

研究者

大学院情報科学研究科

大関 真之  

Masayuki Ohzeki

生体材料やシミュレーションによる医療デバイス開発

前の画像
次の画像
特徴・独自性
  • ハイドロゲルを用いて、医療デバイスの状態を視認できるように、透明で表面摩擦抵抗が低く、ヒト血管の力学的特性および形状を忠実に再現できる全身血管モデルや、骨のモデルを開発しています。また、最適化手法を用いた医療デバイスの最適なデザインの研究として、特に、脳動脈瘤治療用ステント、カテーテルなどの開発をしています。これらは、デバイス開発のための動物実験の減少にも、貢献が期待されます。
実用化イメージ

医療デバイス開発を進める企業、業界との連携が可能。医療画像診断装置や画像処理、MEMS を用いた応用展開、標準化開発業界、医療トレーニング企業、高分子素材企業など様々な場面で応用が期待できます。

研究者

流体科学研究所

太田 信  

Makoto Ohta

ヒトの五感に訴える新製品・新分野を開発-亜臨界溶媒分離法における実験と理論の開発―

前の画像
次の画像
概要

超臨界/亜臨界抽出分離技術とは、水や二酸化炭素等の物質を高圧・高温にした際に、それらが液体と気体の両方の性質を併せ持った流体(超臨界/亜臨界流体)となることを利用し、その流体を用いてこれまで分けられなかった様々な物質を抽出分離できる技術です。特に亜臨界抽出では、より温和な条件での抽出分離を実現しています。有機溶剤を使用しないグリーンな抽出分離プロセスや装置、理論の研究開発を行っています。

従来技術との比較

開発した亜臨界溶媒分離法は,在来型の蒸留・抽出・分離等の化学工学プロセスとは異なり,大幅なスケールダウンを実現できることがメリットです。

特徴・独自性
  • 水,エタノール,二酸化炭素等の環境溶媒のみを製造工程に用いることができる
  • SDGsの推進
  • 日本発の医薬食品・飲料・化粧品・化成品等の製造工程のグリーンイノベーション
  • これまでに分離できなかった、利用できていなかった有用成分の利活用
実用化イメージ

低極性・高極性化合物や沸点の異なる化学物質の分離に長けています.クロマト法の精密性には及びませんが,物質群としての分離・分画操作には向いています.医薬食品・飲料・化粧品・化成品等の分野に応用できます。

研究者

大学院工学研究科

大田 昌樹  

Masaki Ota

浮体式洋上風車・次世代航空機の非線形空力弾性・マルチボディ解析技術

前の画像
次の画像
概要

浮体式洋上風車・次世代航空機は軽量細長なブレード・翼を有するため,非線形空力弾性変形が避けられません.本研究では回転座標を一切使わない高効率な非線形空力弾性解析法を構築してきました.また,この非線形空力弾性変形は浮体の揺動や航空機の舵面駆動といったボディ同士の相対運動(マルチボディダイナミクス)と連成します.我々は支配方程式レベルからこの新たな連成問題に対する解析法の構築に取り組んでいます.

従来技術との比較

本研究で提案する非線形解析法を用いれば,従来の線形解析法では捉えることができない大変形に伴うフラッタ発生速度の低下や変形と飛行挙動の連成現象を扱うことができます.

特徴・独自性
  • 回転座標を一切使わない分かりやすい非線形構造解析法
  • 大変形に対応した高効率な非定常流体計算法
  • 浮体の揺動や航空機の舵面駆動といったボディ同士の相対運動を捉えるマルチボディダイナミクス
実用化イメージ

流体構造関連機械の挙動予測・空力弾性解析・構造解析・振動解析・空力解析
浮体式洋上風車
衛星航空機高アスペクト比翼旅客機
・ヘリコプター,ドローン
・ロボット,建設機械

研究者

大学院工学研究科

大塚 啓介  

Keisuke Otsuka

固体ナノ構造中の電子物性解明とデバイス応用

特徴・独自性
  • 微細加工によりナノメートルスケールの微細構造を作製し、その電気的性質の解明とデバイス応用の研究を進めています。
実用化イメージ

精密・高速電気測定(低ノイズ、単一電子検出等)、極低温・高磁場測定、微細加工、データ科学手法などが得意です。これらがお役に立てることがございましたら、ぜひお知らせ下さい。

研究者

高等研究機構材料科学高等研究所

大塚 朋廣  

Tomohiro Otsuka

固体ナノ構造を用いた量子デバイスの研究

特徴・独自性
  • 固体ナノ構造中で生じる量子状態を利用して、量子センサや量子ビット等の量子デバイスの研究を進めています。
実用化イメージ

単一電子スピン状態等の量子状態の電気的精密・高速測定、制御、データ科学手法などが得意です。これらがお役に立てることがございましたら、ぜひお知らせ下さい。

研究者

高等研究機構材料科学高等研究所

大塚 朋廣  

Tomohiro Otsuka

困難な実環境下で機能するタフなサイバーフィジカルAI

前の画像
次の画像
概要

身体性をもって実世界で稼働するサイバーフィジカルAIの重要性が急速に高まっている。特に、SDGsや災害などの我が国や世界が有する重大な社会課題や産業課題の解決に資する科学技術に対するニーズが顕在化している。サイバーフィジカルAIが困難な環境下で機能するための高度化、すなわち、システムの頑健性、柔軟性、適応性、それに基づく広い適用性を意味するタフ・サイバーフィジカルAIに関する研究開発を行っている。

従来技術との比較

災害救助や保守点検等は,作業者に危険が伴うこと、及び、作業精度の点で限界があった。そのような領域にAIやロボット技術を適用することで,これまで実現できなかった安全かつ高精度かつ迅速な作業が可能となる。

特徴・独自性
  • 困難環境を探査するアームを有するクローラ機構や球殻ガードを有するドローン機構の研究開発
  • LiDARやカメラや慣性センサを融合した高精細なセマンティック地図構築技術の研究
  • 過酷環境で認識や位置推定や地図構築(SLAM)や動作生成を行う頑健な知能化ソフトの研究開発
  • 既存の移動体に後付けで機器を搭載して自動化を行うレトロフィット技術の研究開発
  • 人とイヌのコミュニケーションやイヌの能力を拡張するAI・ロボット技術の研究開発
実用化イメージ

建設業,製造業,物流,ペット産業をはじめ,あらゆる業界と連携できる可能性がある。また,産業イノベーションや防災・災害対応の政策を推進する官庁,実証機会を提供できる地方自治体との連携が可能。

研究者

タフ・サイバーフィジカルAI研究センター

大野 和則  

Kazunori Ohno