Tohoku University. Research Profiles

LANGUAGE

"M" Researcher - 23 Result(s)

M

 M

Development of Soft Magnetic Materials and Magnet Consisting of Complete Rare-Earth Free Elements Both with Ultimately-High-Efficient Types Contributing to Energy- and Resource-Saving by Precise Controlling their Nanostructures

NEXT
PREV
Features

Features and Originalities
Research activities include high functionalization and attachment of additional values to the soft magnetic materials of iron-group based metallic glasses, nanocrystalline and amorphous alloys and magnets, both from non-equilibrium alloys with useful properties that have not been achieved by conventional crystalline alloys. Recent successful results contain newly-developed nanocrystalline soft magnetic alloys with high saturation magnetic flux density of 1.8 Tesla or higher and low core loss of ~1/3 to that of the Silicon steels and fabrication of rare-earth free L10-FeNi magnets.

Possible Academic/Industrial Collaborations
The target materials possess high potential as industrial materials owing to Fe-based alloy with low material costs accompanied by rare-earth-free nature and to producibility in an air environment. Expectations are contributions to energy-saving, saving mineral resources and reducing carbon dioxide emissions through collaborations with companies dealing with materials and applications.

Targeted Application(s)/Industry

New Industry Creation Hatchery Center
MAKINO Akihiro, Professor Doctor of Engineering

Discovery of diagnostic markers by metabolomics

NEXT
PREV
Features

Losing cholesterol homeostasis with inborn errors of metabolisms or hepatobiliary diseases makes a change to in vivo cholesterol metabolism profile and causes the emergence of increased metabolites as conjugates in blood and urine. We have developed an LC/ESI-MS/MS method using fragment patterns characteristic of conjugation types for group-specific and comprehensive analysis of conjugated cholesterol metabolites. This method can contribute for an efficient discovery of diagnostic marker candidates toward various diseases.

Targeted Application(s)/Industry

After availability verification of candidates as diagnostic markers, it will be required screening tests. We have potential to collaborate with company for development of bioassay systems using antibodies or enzymes.

Tohoku University Hospital
MANO Nariyasu, Professor Doctor of Pharmaceutical Sciences

Skeletal Regulation of Energy Metabolism

NEXT
PREV
Features

This project studies the influence of bone on energy metabolism in the body through health and disease.

Targeted Application(s)/Industry

This project may come up with new tools for metabolic syndrome prediction, therapy and diagnosis .

Frontier Research Institute for Interdisciplinary Sciences Tohoku University
MARAHLEH Aseel, Assistant Professor DDS PhD

Identification of Ignition and Combustion Characteristics by a Micro Flow Rector with a Temperature Gradient

NEXT
PREV
Features

We have developed a methodology for identifying general ignition and combustion characteristics of gaseous and liquid fuels including bio and synthetic fuels. It enables identification of ignition and combustion characteristics of new fuels prior to application for practical combustion devices. The reactor system consists of a small diameter channel which has a temperature gradient from room temperature to the auto ignition temperature and thus reaction characteristics in different temperature levels can be easily investigated. Such a measurement had required research level skills and special devices such as rapid compression machine or shock tube which is costly in general, however, the micro flow reactor with temperature gradient enables reaction analysis easily.

Targeted Application(s)/Industry

It is expected to contribute to the designing of combustion devices, developments of new fuels, and chemical promoter and inhibitor.

Institute of Fluid Science
MARUTA Kaoru, Professor Doctor of Engineering

Business Continuity Management (BCM)

NEXT
PREV
Features

Business continuity management (BCM) is a strategy of a company or a public organization to continue critical operations or recover them early even when they suffer serious damage from disasters, major accidents, terrorism, infectious diseases and so on. The plans for BCM is called BCPs. Japanese government and industry organizations actively promote introduction and improvement of BCM. My laboratory have studied how to spread and improve BCM. I participate in development of governmental guidelines for BCM. I also operate a BCM study group consist of companies, governmental organizations and research institutes in Sendai City.

Targeted Application(s)/Industry

I would be able to give an advice to companies or organizations which are going to introduce or improve their BCM and BCP at the request of them. In addition, collaboration with corporate groups can be assumed to promote or improve BCM practically.

International Research Institute of Disaster Science
MARUYA Hiroaki, Professor Doctor(Economics)

Photo-Induced Characteristics of TiO2 Prepared by Anodic Oxidation

NEXT
PREV
Features

Ti anodizing technique has been offered for coloring the surface of Ti, and its mechanism is understood by light interference varied with the oxide thickness. A characteristic of this study is to control the crystallinity of the oxide, and its originality is to provide photo-induced characteristics to Ti and its alloys by controlling the electrochemical conditions differed from that of coloration technology. This study is aimed for controlling the surface of Ti by using a simple and easy, inexpensive technique and to fabricate high functional titanium materials.

Targeted Application(s)/Industry

Related to practical applications, it is considered as a use for environmental purification such as deodorization and water purification, biomaterial and antibacterial and structural titanium.

Institute for Materials Research
MASAHASHI Naoya, Professor Doctor of Engineering

Visualization of supply chain risks from the resource logistics perspective

NEXT
PREV
Features

With the increased global concerns of resource and environmental constraints of recent years, the role of mining, as a constituent of social responsibility associated with resource extraction and usage, is becoming increasingly important in the science, technology, and innovation policy. Under increasing public and shareholders' concerns of social and environmental sustainability, the fabrication industries require careful attention owing to their own risks related to the resources and materials that are used in their products and services. The Material Flow Analysis tool and Input output technique provide useful perspectives and valuable evidences for avoiding or minimizing the social and environmental risks related to the demand of resources.

Targeted Application(s)/Industry

Our developed model evaluates the risk weighted flow analysis by combining the resource logistics database and Global Link Input Output model. The estimated results shed light on how resource logistics prepares policy makers and R&D engineers to confront the risks behind resource usage and how the information should be shared among the stakeholders.

Graduate School of Environmental Studies
MATSUBAE Kazuyo, Professor Doctor of Economics

Development of an Industrial Instrument / the Medical Equipment Using the Contactless Power Transmission System

NEXT
PREV
Features

Using a non-contact power transmission technique, we develop an industrial instrument and the medical equipment. In the industrial instrument, we deal with the wide non-contact electricity transmission of the dozens of kW class from mW class from a small size electric apparatus represented by a cell-phone to the factory carrier device. In addition, we develop the contactless electricity transmission to an artificial heart (TETS) and a functional electrical stimulator (FES) aiming at the exercise of limbs inconvenience person function rebuilding mainly in the medical equipment.

Targeted Application(s)/Industry

We develop soft-heating hyperthermia using the small implantation element which does not need an internal temperature measurement as cancer treatment.

Graduate School of Biomedical Engineering
MATSUKI Hidetoshi, Professor Doctor of Engineering

Vacuum Engineering of Solid-Liquid Interfaces and its Process Applications

NEXT
PREV
Features

We challenge to fabricate in vacuum-stabilized micro/nano-scale liquid materials, explore their novel chemicophysical properties and develop their vacuum processing applications. The representative examples include ultra thin film ionic liquid on the nanometer scale and advanced vapor-liquid-solid growth (VLS) of inorganic/organic materials, such as 4H- and 3C-SiC films, single crystal pentacene and a porous polymer film of plolythiophene.

Targeted Application(s)/Industry

Our research outcomes will contribute to the following research and development:
1) a next-generation semiconductor process with the merits of the wet process
2) a new purification process of organic semiconductors, by which some part of inorganic semiconductor materials would be replaced in response to the present world-wide shortage of semiconductors.

In addition, the consultation of how to use our ionic liquid-assisted vapor growth method in attempt to obtain organic single crystals is welcome.

School of Engineering
MATSUMOTO Yuji, Professor Doctor of Science

R&D in Semiconductor Materials and their Device Applications Bringing System Evolutions

NEXT
PREV
Features

1. Development of Distributed Feedback (DFB) Laser Diodes (LD) widely used in optical communications systems realizing a highly information-based society. This LD increases the transmission capacity by 25,000 times per fiber which means the bit rate of 10Tb/s.

2. Nitride semiconductors famous for blue light emitting diodes.
(a) Proposal of InGaAlN system considering device applications in 1989
(b) Success in growth of single crystalline InGaN by metalorganic vapor phase epitaxy (MOVPE) in 1989
(c) Prediction of band-gap energy (Eg) of InN much smaller than the values reported in 1980s and its   experimental confirmation in 2002
(d) Observation of photoluminescence from InGaN in 1991
(e) Prediction of phase separation in InGaAlN in 1997

Targeted Application(s)/Industry

DFB-LD: Fabrication of periodic structure with submicron scale, Epitaxial growth of semiconductor films on the substrate with fine structures, LD fabrication process, device evaluation, and device simulation

Nitride Semiconductors: MOVPE growth, N-polar growth, Evaluation of semiconductor materials, Fabrication of light-emitting devices, solar cells, and high-power transistors

New Industry Creation Hatchery Center
MATSUOKA Takashi, Professor Doctor of Engineering

Development of Optical Sysytems for Noninvasive Treatment and Diagnosis

NEXT
PREV
Features

Optical fiber-based endoscopic systems for non-invasive treatment and diagnosis are developed. The fiber transmits high-powered laser light for treatment and low-powered light for diagnosis. We develop treatment and diagnosis systems utilizing not only common glass-based optical fibers but hollow-optical fibers. Hollow optical fibers deliver high-powered infrared lasers and light with wide range of wavelength from ultraviolet and far infrared.

Targeted Application(s)/Industry

Our potential collaborators will be medical device manufactures, as well as any electronic device, communication device, and measurement instrument manufactures considering new entry to the field.

Graduate School of Biomedical Engineering
MATSUURA Yuji, Professor

Brain Science-Based Preventive Care and Rehabilitation for Dementia in Communities

Features

1. To produce the brain science-based evidence for dementia prevention using neuropsychological tests and neuroimaging methods (amyloid PET etc.)
2. To establish the evidence-based integrated community care system including early detection, preventive care, and rehabilitation for dementia.
3. To apply for early screening of the " weakness due to disaster" by considering the measure for dementia is similar to that for the weakness.

Targeted Application(s)/Industry

An industry-academic cooperation is expected with insurance companies, industries for producing screening device, program for preventive care and rehabilitation.

Division of Geriatric Behavioral Neurology, Cyclotron and Radioisotope Center
MEGURO Ken-ichi, Professor MD, PhD

Advanced Educational Environment with Interactive Instruction System IMPRESSION

NEXT
PREV
Features

IMPRESSION is an interactive instruction system for both face-to-face lesson and distance education.
It was designed to facilitate teachers to plan and perform effective and attractive lessons with various multimedia materials, and help to evaluate performed lessons and improve them based on the double loop instructional design process, which is focusing on interaction between a teacher and students.

Targeted Application(s)/Industry

It could be used to perform advanced education with multimedia materials in schools, and also to design and implement training for employees at branch offices.

Center for Information Technology in Education
MITSUISHI Takashi, Associate Professor PhD

Prediction and Prevention of Fractures

NEXT
PREV
Features

We have been developing methods for explicating the dominant factors that determine the physical and chemical properties of materials and stacked structures used in human societies. Since the number of element atoms which consists of advanced materials has been increasing, and the crystallographic structure of the materials has become very complicated, both the various properties and reliability of the materials fluctuate significantly in nano-scale, and thus, deteriorate easily due to the local damages of the materials.

Targeted Application(s)/Industry

To design the optimal structure, composition of materials, and the fabrication process of both materials and stacked structures, we are going to develop a method of analyzing the atomic structure of thin film materials based on quantum mechanics and experimental methods for measuring material properties, atomic scale damage or defects in nano-materials.

Fracture and Reliability Research Institute, Graduate School of Engineering
MIURA Hideo, Professor PhD., Dr. of Engineering

Development of PHD-Targeted Drug for Ischemic Injury

NEXT
PREV
Features

All the living organisms generate energy from molecular oxygen to maintain their own lives. Once the concentration of oxygen falls down, life activity gets severely hampered and it could sometimes cause death. Typical examples that are related to local hypoxia are ischemic heart disease, stroke and kidney disease.
We focus on the function of prolyl hydroxylase (PHD) as a sensor to detect the hypoxia, and we are developing drugs to treat ischemic injury by controlling hypoxia.

Targeted Application(s)/Industry

Currently, we have several compounds that inhibit the PHD. We want to commercialize in conjunction with pharmaceutical companies in Japan and overseas, advancing our non-clinical studies for clinical development.

Division of Molecular Medicine and Therapy, United Centers for Advanced Research and Translational Medicine (ART), Graduate School of Medicine
MIYATA Toshio, Professor M.D., PhD

Development of Potential Thermoelectric Materials

Features

We have been exploring novel thermoelectric materials. Functions of a solid substance primarily depend on the electronic structure, directly derived from its crystal structure. Through high-quality structure analyses using neutron and X-ray diffraction, combined with first-principles calculations, we have been fabricating materials with desired functions. To date, more than 40 novel materials have been discovered based on our guiding principles.

Targeted Application(s)/Industry

For developing future device technologies, challenges on thin-film thermionic multilayers and organic thermoelectric materials are currently underway.

Graduate School of Engineering
MIYAZAKI Yuzuru, Professor Doctor of Engineering

Spintronics Devices and Materials

NEXT
PREV
Features

Spintronics is a technology utilizing electron spin which provided magnetic sensor, nonvolatile magnetic memory, and so on. Our studies are as below.

Noble & Rare-earth free magnetic films with large perpendicular magnetic anisotropy. We achieved to develop various Mn-bases alloy films exhibiting high perpendicular magnetic anisotropy (Fig.1 ).
THz range observation of magnetization motion. We achieved to detect a motion of magnetization using pulse laser in time domain (Fig. 2).
Novel organic spin devices. We achieved to fabricate hybrid junction consisting of an organic layer sandwiched by two inorganic magnetic layers and to observe magnetoresistance effect.
Tunnel Magnetoresistive devices: We are developing TMR devices with Mn-Ga alloys films (Fig.3 ).

Targeted Application(s)/Industry

Magnetic memory and storage. Microwave and Terahertz wave. Magnetic sensors.
We hope to conduct collaborative research with a willing company for a practical application of these devices and materials in industry.

WPI Advanced Institute for Materials Research
MIZUKAMI Shigemi, Professor Doctor of Engineering

Imaging and photoregulation of biological functions

Features

To properly understand the functions of biomolecules, it is essential to observe them under physiological conditions where the interactions with other biomolecules are preserved. Therefore, we are developing new functional molecules using both organic chemistry and protein science approaches, and working on the visualization and optical control of biomolecules and their functions. Especially, we have developed fluorescent probes that quantitate the concentration of biomolecules or ions in subcellular regions such as organelles and caged compounds and photoswitches that optically manipulate the biomolecular functions.

Institute of Multidisciplinary Research for Advanced Materials
MIZUKAMI Shin, Professor Ph.D.

Creation of a high functional bio-interface using laser fabrication

NEXT
PREV
Features

 Using laser fabrication, we are developing techniques to enhance material surface properties and functionality. For example, to create a functional interface, we aim to clarify, by way of simulation and experimentation, the phenomenon that occurs when the surface of a material is irradiated using a laser beam.
 We expect that the results of our research will be widely applicable, including biomedical devices.

■ Creation of biocompatible surfaces
 Materials used for artificial organs, vessels, and other bio-implants require excellent tissue and cell biocompatibility. Therefore, we are exploring the creation of biocompatible surfaces using a new laser irradiation process in this study.
 We have succeeded in imparting a biologically active function to titanium-based materials by applying the laser irradiation technique. When such a material that has a biologically active function is inserted in a living body, hydroxyapatite (the principal constituent of bones and teeth) precipitates on the surface. Using the laser irradiation technique, we can manufacture bone-adherent implants, and we envisage their application to artificial joints or dental implants.
 This research aims to discover such breakthrough solutions for biomedical applications using the laser irradiation technique.

Department of Mechanical Systems and Design, Graduate School of Engineering
MIZUTANI Masayoshi, Associate Professor Ph. D. (Engineering)

X-Ray Phase Imaging for High-Sensitive Non-Destructive Testing

Features

Conventional X-ray imaging methods that rely on X-ray attenuation cannot generate clear contrast in the observation of low-density materials such as polymers consisting of low-Z elements. However, the sensitivity to the materials can be improved drastically by X-ray phase imaging that detects X-ray refraction caused by the materials. X-ray Talbot or Talbot-Lau interferometry consisting of X-ray transmission gratings is now constructed in laboratories for X-ray phase imaging. X-ray phase tomography is also realized, enabling high-sensitive three-dimensional observation.
X-ray phase imaging can be utilized for X-ray non-destructive testing of industrial products and baggage that cannot be checked conventionally.

Targeted Application(s)/Industry

We aim at appending a phase-contrast mode to micro-CT apparatuses and developing screening apparatuses in production lines.

Institute of Multidisciplinary Research for Advanced Materials
MOMOSE Atsushi, Professor Dr.