"E" Keywords - 71 Result(s)

 E

[e-learning]

Advanced Educational Environment with Interactive Instruction System IMPRESSION

NEXT
PREV
特徴・独自性
  • IMPRESSION is an interactive instruction system for both face-to-face lesson and distance education.
  • It was designed to facilitate teachers to plan and perform effective and attractive lessons with various multimedia materials, and help to evaluate performed lessons and improve them based on the double loop instructional design process, which is focusing on interaction between a teacher and students.
実用化イメージ

It could be used to perform advanced education with multimedia materials in schools, and also to design and implement training for employees at branch offices.

Researchers

Center for Data-driven Science and Artificial Intelligence

Takashi Mitsuishi

[Early diagnosis]

Functional and Molecular Imaging with Positron Emission Tomography (PET)

NEXT
PREV
特徴・独自性
  • Using positron emission tomography (PET), we can measure the regional metabolism, perfusion and signal transmission between neurotransmitters and receptors in various organ systems of living humans and animals, such as the brain and heart. Recent technical developments have shown that the mind, or at least some parts of it, can be demonstrated by "imaging".
実用化イメージ

Our group has had considerable achievements in clinical research on drug effects and side effects, elucidation of underlying mechanism of alternative and complementary therapies, as well as exercise physiology.

Researchers

Research Center for Accelerator and Radioisotope Science

Manabu Tashiro

[Earth Observation]

Design and Development of 50 kg-class Micro Satellites

NEXT
PREV
特徴・独自性
  • We design and develop micro satellites in a format of 50 cm cubic size and 50 kg mass. We have developed the first and second micro satellites of Tohoku University, named “RISING” and “RISING-2”, launched by using JAXA’s H-IIA rocket vehicle in January 2009 and May 2014, respectively. Both satellites are operated from our ground station in the university. Particularly, RISING-2 has succeeded in capturing high precision color images of the Earth's surface at a spatial resolution of 5m, the highest in the world among 50kg-class satellites. Now the third micro satellite for international science mission is under the development. In addition, we are active in nano satellite development. The first nano-sat “RAIKO” in a 10 by 10 by 20 cm format was launched from the International Space Station in 2012. More nano-sats are under the development.
実用化イメージ

We would like to make innovation in space business by introducing a new paradigm for rapid and low cost development of space systems for various missions of remote sensing, earth observation, and space exploration. We have rich experience in the development of spacecraft bus systems, onboard avionics systems and mission instruments. Collaborations with technology and business partners are welcome.

Researchers

Graduate School of Engineering

Kazuya Yoshida

[earth science]

Role of Volatiles on Petit-Spot Volcanoes

NEXT
PREV
特徴・独自性
  • The new kind of volcanoes, petit-spot, are located off NE Japan and Chile. They erupt at a submarine portion to be far from tectonic plate boundaries (e.g., mid-oceanic ridges and volcanic arcs) of the usual sites of volcanoes, earthquakes, and related geologic activity. The magmas have extremely high carbon dioxide and possibly originate from the base of tectonic plate.
実用化イメージ

The magma is squeezed upward and erupts in deep submarine environment wherever the tectonic plate flexes and fractures in the world. Collaborating work with business community would be required in order to search the submarine volcanoes and their related mines.

Researchers

Center for Northeast Asian Studies

Naoto Hirano

[Earthquake]

Role of Volatiles on Petit-Spot Volcanoes

NEXT
PREV
特徴・独自性
  • The new kind of volcanoes, petit-spot, are located off NE Japan and Chile. They erupt at a submarine portion to be far from tectonic plate boundaries (e.g., mid-oceanic ridges and volcanic arcs) of the usual sites of volcanoes, earthquakes, and related geologic activity. The magmas have extremely high carbon dioxide and possibly originate from the base of tectonic plate.
実用化イメージ

The magma is squeezed upward and erupts in deep submarine environment wherever the tectonic plate flexes and fractures in the world. Collaborating work with business community would be required in order to search the submarine volcanoes and their related mines.

Researchers

Center for Northeast Asian Studies

Naoto Hirano

[Earthquake Engineering]

[Ecology]

Mathematical Biology

NEXT
PREV
特徴・独自性
  • Principal subject of our study is the mathematical model analysis to make clear or present the point at issue for scientific discussion about real biological/social phenomena, or to promote the advanced theoretical research: what theoretical problem about target phenomenon is treated, how the problem is mathematically modeled, what mathematical analysis is applied for the model, and how the mathematical result is lead to the discussion in biological/social science.
実用化イメージ

Researchers

Graduate School of Information Sciences

Hiromi Seno

[ecycling cooperative behavior]

Developing plastic waste sorter using Terahertz waves and social implementation of sustainable recycling technology

NEXT
PREV
概要

This research utilizes the characteristics of terahertz waves, used in next-generation communications and autonomous driving, to identify the materials of plastic waste. It improves existing recycling technologies and can be applied to evaluate the quality of recycled plastics, ensuring stable production of high-quality recycled plastics. It enables easy development of devices to solve various issues in containers and packaging and automobile recycling, contributing to the realization of decarbonization and a circular economy.

従来技術との比較

Conventional plastic waste identification and sorting technologies use specific gravity sorting or near-infrared devices. Particularly, near-infrared sorting technology has accumulated an enormous amount of data and serves as the primary sorting technology in plastic recycling plants. However, near-infrared devices struggle with identifying black plastics, additives, and degradation. This technology uses terahertz waves to measure and evaluate transmission and absorption characteristics, allowing for identification of black plastics, additives, and degradation.

特徴・独自性
  • In recent years, there has been increasing global attention on plastic waste issues, such as marine pollution from drifting garbage and microplastics, the overseas export of plastic waste resources, and the increase in disposable containers like plastic bags and straws, especially due to the impact of COVID-19. There is growing demand for advanced identification and recycling of plastic waste materials, especially in the context of achieving the Sustainable Development Goals (SDGs) and realizing a circular economy.
  • The research group from Tohoku University, Shibaura Institute of Technology, and Shizuoka University has conducted research on the commercialization of advanced sorting devices for plastic packaging waste. We have successfully identified mixed plastics containing black plastics, additives, and flame retardants, which were difficult to identify with existing devices, by utilizing the characteristics of terahertz waves. We have also confirmed the ability of terahertz waves in assessing degradation caused by UV or long-term use. Furthermore, the method has been shown to be effective for distinguishing bioplastics, which is expected to see increasing demand in the future, in addition to plastic waste from container packaging, automobiles, and home appliances.
  • These identification technologies can be applied to properly sort plastic waste generated by the “The Plastic Resource Circulation Act,” enacted in 2022, contributing greatly to securing high-quality recycled resources through plastic waste resource recycling.
  • Our research group conducts interdisciplinary research with experts in various fields: social engineering, resource circulation (Professor Jeongsoo YU), optical engineering (Professor Tadao TANABE of Shibaura Institute of Technology and Professor Tetsuo SASAKI of Shizuoka University), information science and big data analysis (Associate Professor Kazuaki OKUBO), data collection and analysis, international cooperation (Specially Appointed Lecturer Gaku MANAGO), social experiments, and behavioral economics (Assistant Professor Xiaoyue LIU). We address the needs from social, economic, and environmental issues both domestically and internationally, working from diverse perspectives to solve challenges and contribute to the creation of a sustainable society. Collaboration and networking with private companies, government agencies, research institutions, and civic organizations are also expected.
実用化イメージ

This technology can be applied to the development of plastic waste identification and sorting devices from processes such as containers and packaging recycling, automobile recycling, and home appliance recycling, as well as the production and quality evaluation of recycled plastics.

Researchers

Graduate School of International Cultural Studies

Jeongsoo Yu

[elastic constant]

Mechanical and acoustic properties of nm devices studied by GHz-THz ultrasonics

NEXT
PREV
概要

Ultrasonic measurement is an important technique that is used in various fields of science and technology, including physical property evaluation, imaging and sensing. I use a measurement technique that uses light to excite and detect ultrasonic waves in the frequency range of GHz to THz, and I use this to evaluate the mechanical and acoustic properties of microstructures and thin films with sizes in the nano to micro range, as well as for non-destructive testing.

従来技術との比較

Conventional ultrasound had a wavelength of several micrometres or more, so it was impossible to measure at the nanoscale.
However, by using femtosecond pulse lasers to manipulate ultrasound with a wavelength of the order of 10 nm, I have achieved the evaluation of the mechanical properties of nano-materials and non-destructive testing in the nano-region.

特徴・独自性
  • Development of unique measurement technology that makes full use of light and sound (lasers and ultrasound)
  • Excitation and detection of vibration phenomena in nano-materials and GHz bands
  • Accurate measurement of sound velocity and elastic constants under high magnetic fields of 10 to 600 K and up to 5 T
  • Measurement of magnetic damping constants and saturation magnetisation from magnetisation oscillations in the time domain
  • Main targets include nano-thin films of metals, piezoelectric materials, and magnetic materials, as well as superhard materials such as diamond and tungsten carbide
  • Contributing to the development of materials and the elucidation of the characteristics of filters for wireless communication in smartphones
  • Applications include the development of highly sensitive biosensors using ultrasound, which has a shorter wavelength than light, and monitoring the breaking process of nanowires
実用化イメージ

This measurement method enables the inspection of defects in semiconductors on the order of nm, and the evaluation of the characteristics of acoustic filters, which are essential for 5G communication devices.

Researchers

Graduate School of Engineering

Akira Nagakubo

[Elastic deformation]

Development of a Numerical Prediction System for Sliding Part Wear and Seizure Occurrence Portions

NEXT
PREV
概要

Focusing on the lubricant film flow with phase change between the engine piston pin and connecting rod small end, we developed a new multiphase fluid-structure coupled analysis method that takes into account elastic deformation of the structure and flow path changes and developed a simulation prediction method for tribological properties under high load conditions. The simulation prediction method for tribological properties under high load conditions has been created. As a result, we succeeded in simulation prediction of the wear/seizure generating areas in sliding parts. We discovered that the peculiar deformation behavior of the components is the cause of wear/seizure.

従来技術との比較

It has been thought that computational prediction is impossible to verify the wear and seizure locations in fluid lubrication. Still, this study succeeded in the simulation prediction of wear and seizure locations in sliding parts.

特徴・独自性
  • Numerical prediction of the wear and seizure locations in the sliding parts of engine piston pins was successfully performed.
  • The bow-like deformation of the piston pin was identified as the cause of mechanical contact and seizure at the connecting rod edge.
  • A three-dimensional multiphase fluid-structure coupled analysis method has been successfully developed, considering the piston pin's elastic deformation and connecting rod and thin-film cavitation1 lubrication with unsteady flow path changes.
実用化イメージ

This research method applies to automotive engines and all sliding component elements using fluid lubrication. It contributes to damage prediction and the development of safety guidelines for transportation and industrial machinery components, enabling the optimal design of components.

Researchers

Institute of Fluid Science

Jun Ishimoto

[Elastohydrodynamic Lubrication]

Development of a Numerical Prediction System for Sliding Part Wear and Seizure Occurrence Portions

NEXT
PREV
概要

Focusing on the lubricant film flow with phase change between the engine piston pin and connecting rod small end, we developed a new multiphase fluid-structure coupled analysis method that takes into account elastic deformation of the structure and flow path changes and developed a simulation prediction method for tribological properties under high load conditions. The simulation prediction method for tribological properties under high load conditions has been created. As a result, we succeeded in simulation prediction of the wear/seizure generating areas in sliding parts. We discovered that the peculiar deformation behavior of the components is the cause of wear/seizure.

従来技術との比較

It has been thought that computational prediction is impossible to verify the wear and seizure locations in fluid lubrication. Still, this study succeeded in the simulation prediction of wear and seizure locations in sliding parts.

特徴・独自性
  • Numerical prediction of the wear and seizure locations in the sliding parts of engine piston pins was successfully performed.
  • The bow-like deformation of the piston pin was identified as the cause of mechanical contact and seizure at the connecting rod edge.
  • A three-dimensional multiphase fluid-structure coupled analysis method has been successfully developed, considering the piston pin's elastic deformation and connecting rod and thin-film cavitation1 lubrication with unsteady flow path changes.
実用化イメージ

This research method applies to automotive engines and all sliding component elements using fluid lubrication. It contributes to damage prediction and the development of safety guidelines for transportation and industrial machinery components, enabling the optimal design of components.

Researchers

Institute of Fluid Science

Jun Ishimoto

[elderly people]

Development of Fall-Prevention Footwear Based on Mechanical Analysis of Slip-Related Falls

NEXT
PREV
特徴・独自性
  • The number of fatalities due to falling accidents indoor/outdoor has increased in Japan as well as in other advanced countries. The fatalities due to falling accidents in a year have exceeded those due to traffic accidents in Japan recently. Because more than 80% of the fatalities are elderly people, it is considered an urgent issue to prevent their falling. We have conducted researches on falling during walking due to induced slip, in the contact interface of shoe sole and floor, through tribological and biomechanical approaches. We clarified the required values of static friction coefficient (figure 1), between shoe sole and floor, and how to gait to prevent slipping through kinetic analysis of gait. We also succeeded in the development of a unique footwear outsole having the high-grip property (figure 2) and high slip-resistant concrete pavement blocks (figure 3) through the collaboration with regional companies. We have recently conducted research and development of footwear that is able to prevent falls due to balance loss after slipping.
実用化イメージ

Products for fall prevention in daily life or in work site. Evaluation of slip resistance of footwear and floor materials.

Researchers

Graduate School of Engineering

Takeshi Yamaguchi

[Electric conduction]

Oxide Electronics

NEXT
PREV
特徴・独自性
  • Our research group investigates creation of functional oxides and their functionalities. We synthesize thin films by pulsed laser deposition and sputtering methods and bulk specimens, and develop their novel synthetic routes. Recently, we are studying electrically conducting rare earth oxides, transparent room temperature ferromagnetic semiconductors, and metal hydrides. We will develop our materials design by extending materials range and performing thin film heteroepitaxy.
実用化イメージ

Collaborative research in fields of oxide electronics with novel electric conducting oxides and oxide spintronics with ferromagnetic semiconductors and novel ferromagnetic oxides.

Researchers

Graduate School of Science

Tomoteru Fukumura

[Electrical conductivity]

Development of High Performance Carbon Nanotube-Alumina Composite

NEXT
PREV
特徴・独自性
  • One of the important challenges in the development of carbon nanotubes (CNTs) reinforced ceramic composites is uniform dispersion of CNTs in the matrix. The mechanical properties of CNT/ceramics composites have been limited to date due to the formation of CNT agglomerates in the composite. We have successfully produced CNT/alumina composites with world top class strength and toughness, by employing a newly developed CNTs dispersion technique based on a flocculation method. The processing method developed in this study enables us to prepare high performance CNT materials using a pressureless sintering method.
実用化イメージ

The possible applications of the CNT/alumina composites developed in this study include tribological materials (ball bearing), biomaterials (artificial hip joint), micro-actuator materials utilizing electrostrictive effects, electromagnetic wave absorber, particularly in the frequency range of several GHz and several ten GHz.

Researchers

New Industry Creation Hatchery Center

Toshiyuki Hashida

[Electro conductivity]

Polymer-nanoparticle hybrid materials

NEXT
PREV
特徴・独自性
  • Hybrid materials that show multi-functions of polymer and nanoparticles are expected to be used in future industries, and thus many research and development have been actively conducted. However, since the affinity of polymer and inorganic nanoparticles is very low, in most of the cases, properties of different materials are incompatible in the hybrid materials. To create the hybrid materials with incompatible multi-functions has been considered a difficult task.
  • However, by using supercritical fluid technology, we have succeeded in making hybrid materials with incompatible multi-functions.
実用化イメージ

Now, variety of hybrid materials are being developed, including
・Transparent, flexible, high reflective index, and high fabricability,
・Flexible, high heat conductivity, low electric resistivity, and high fabricability.

Researchers

Advanced Institute for Materials Research

Tadafumi Ajiri

[Electrochemical Surface Forces Apparatus]

Development of Nano-Interface Chemistry for Materials Sciences Using Surface Forces Measurement

NEXT
PREV
特徴・独自性
  • Our research aims at developing methods, including instrumentation, for characterizing surface (or interface) at the nano-meter level. Most of our research subjects are related to the surface forces measurement, which can directly monitor the interaction between two surfaces. We study phenomena occurring at the solid-liquid interface such as adsorption and structuring of liquids. We have developed the resonance shear measurement which is a sensitive method for evaluating properties of confined liquid for nano-rheology and tribology. Twin-path surface forces apparatus we developed enabled us to study wide variety of samples such as metals, ceramics and plastics.
実用化イメージ

These methods are applicable for characterizing lubricants, nano-materials, paints, sealants, and cosmetics. We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.

Researchers

New Industry Creation Hatchery Center

Kazue Kurihara

[electrochemistry]

Biological Application of Scanning Probe Microscope

NEXT
PREV
特徴・独自性
  • We have invented a unique method to non-invasively evaluate the quality of individual mammalian embryos based on oxygen consumption. A Pt microelectrode was scanned near the single embryo sample to obtain oxygen concentration profile. Respiration activity of single embryo was estimated based on spherical diffusion theory. Further, it was found that the respiration activities of individual embryos corresponded the developmental potential of the embryos. Independently, we have developed a procedure of mRNA quantification from single-cell based on SPM featuring multi-functional probes. Next, we are going to combine the two methods mentioned above for quality control of mammalian embryos and embryonic stem cells.
実用化イメージ

Our methods will be applied for assisted reprodictive technoloy (ART), pancreatic islet transplantation, or animal breeding.

Researchers

Graduate School of Engineering

Hitoshi Shiku

Chemical imaging devices which operate in severe environments

NEXT
PREV
特徴・独自性
  • We developed both pH and Cl- imaging plates, which can visualize the pH and Cl- concentration on metal surfaces in acidic environments. The pH range is from 3.0 to 0.5, and Cl- concentration up to 4 M can be measured. Fluorescent dyes are successively used for pH and Cl- imaging in the field of biology, but their sensitivity tends to be insufficient in acidic and/or highly concentrated chloride solutions. A glass plate with a sol-gel sensing layer, which contains a pH indicator or a Cl- sensitive florescent dye was fabricated and validated using the solutions with various pH values and Cl- concentrations. Changes in the pH and Cl- distribution on stainless surface in an acidic environment were measured quantitatively.
実用化イメージ

The newly developed imaging plates can be used to investigate the mechanism of various chemical reactions, such as corrosion, which occurs in an acidic environment. Micro-flow imaging using our sensing technique will be a promising approach to understand the catalytic chemistry of metal surfaces.
強調

Researchers

Graduate School of Engineering

Izumi Muto

Bio-inspired engineering for energy and biological applications

NEXT
PREV
特徴・独自性
  • Our goal is "bio-inspired engineering" to create new functions that exhibit functions beyond the nature systems by learning from their superior functions and incorporating them into creating materials and devices. For example, the development of surface treatment and adhesives learned from mussels, the development of anti-biofouling substrates learned from pitcher plants, the design of non-platinum catalysts for highly active fuel cells (hydrogen, enzymes, microbes, etc.) learned from hemoglobin, and needle-type biosensors learned from biological needles.
実用化イメージ

Based on electrochemistry and polymer chemistry, I provide technologies and expertise in the energy, biotechnology, and electrical and electronic fields, including metal-air batteries, fuel cells, surface treatment, adhesion, biosensors, etc.

Researchers

Frontier Research Institute for Interdisciplinary Sciences

Hiroya Abe

[electrode]

Development of Open Nanoporous Base and Half Metals, Metalloids and their Alloys

NEXT
PREV
特徴・独自性
  • Nanoporous metals have drawn considerable attention due to their highly functional properties. They are generally produced by selective dissolution of elements from a multicomponent alloy (known as the dealloying method). As this method is based on differences in the electrode potential of each element present in the alloy, and this potential is high for noble metals, porous structure can be obtained only for noble metals. Recently we have found a new, simple and easy dealloying method without using aqueous solution, which enable us to develop an open nanoporous non-oxidized metallic material even with base metals (such as Ti, Ni, Cr, Fe, Mo, etc), metalloids and their alloys.
実用化イメージ

This technique is very powerful for developing new functional electrodes, catalysts, filters as well for removing toxic metallic element from the surface of biomaterials containing the toxic element.

Researchers

Institute for Materials Research

Hidemi Kato