Sorted by Keyword - 1989 word(s), 221 profile(s)

 F

[fluorescence moire alignment]

Photo-Functional Advanced Materials for Nanofabrication by Nanoimprint Lithography

NEXT
PREV
特徴・独自性
  • Nakagawa group has dedicated to pursue scientific principles for molecular control of interface function occurring at polymer/other material interfaces and to put them into practice in nanoimprint lithography promising as a next generation nanofabrication tool. We are developing advanced photo-functional materials such as sticking molecular layers for "fix by light", UV-curable resins and antisticking molecular layers for "preparation by light", fluorescent resist materials for "inspection by light", and hybrid optical materials "available to light" and new research tools such as mechanical measurement systems to evaluate release property of UV-curable resins.
実用化イメージ

Our research aims at creating new devices to control photon, electron, and magnetism.

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Masaru Nakagawa

[fluorescent probes]

Imaging and photoregulation of biological functions

特徴・独自性
  • To properly understand the functions of biomolecules, it is essential to observe them under physiological conditions where the interactions with other biomolecules are preserved. Therefore, we are developing new functional molecules using both organic chemistry and protein science approaches, and working on the visualization and optical control of biomolecules and their functions. Especially, we have developed fluorescent probes that quantitate the concentration of biomolecules or ions in subcellular regions such as organelles and caged compounds and photoswitches that optically manipulate the biomolecular functions.
実用化イメージ

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Shin Mizukami

[fMRI]

Food Palatability, Product Usability, and Preference; An Approach from Psychology and Neuroscience.

NEXT
PREV
特徴・独自性
  • My research interest is peoples' perception of external stimulus. Based on these researches and our knowledge, I can offer you an idea of the products that give consumers satisfaction. Also on the basis of psychological and neuro-scientifc experiences and knowledges, I can offer you a transdisciplinary approaches on human perception, cognition, emotion and decision making.
実用化イメージ

Marketing and developing of the products such as foods, beverages, fabric softeners, perfumes, body deodorants etc. The knowledges and research tools are also useful in regulating the malodor in the air pollution, in developing the public services and in elevating public quality of life.

Researchers

Graduate School of Arts and Letters

Nobuyuki Sakai

Brain Mechanism Realizing Human Mind

NEXT
PREV
特徴・独自性
  • I am investigating the brain mechanism of human mind. Specifically, my target is the internal schema that dissociate the self and other in the following three layers: physical, interpersonal, and social domains.
実用化イメージ

  • Improvement of the interface of the system
  • Clarifying the neuro-cognitive mechanism of the effect on the customer
  • New concept of the customer satisfaction

Researchers

Institute of Development, Aging and Cancer

Motoaki Sugiura

[Focused metabolomics]

Discovery of diagnostic markers by metabolomics

NEXT
PREV
特徴・独自性
  • Losing cholesterol homeostasis with inborn errors of metabolisms or hepatobiliary diseases makes a change to in vivo cholesterol metabolism profile and causes the emergence of increased metabolites as conjugates in blood and urine. We have developed an LC/ESI-MS/MS method using fragment patterns characteristic of conjugation types for group-specific and comprehensive analysis of conjugated cholesterol metabolites. This method can contribute for an efficient discovery of diagnostic marker candidates toward various diseases.
実用化イメージ

After availability verification of candidates as diagnostic markers, it will be required screening tests. We have potential to collaborate with company for development of bioassay systems using antibodies or enzymes.

Researchers

Tohoku University Hospital

Nariyasu Mano

[food palatability]

Food Palatability, Product Usability, and Preference; An Approach from Psychology and Neuroscience.

NEXT
PREV
特徴・独自性
  • My research interest is peoples' perception of external stimulus. Based on these researches and our knowledge, I can offer you an idea of the products that give consumers satisfaction. Also on the basis of psychological and neuro-scientifc experiences and knowledges, I can offer you a transdisciplinary approaches on human perception, cognition, emotion and decision making.
実用化イメージ

Marketing and developing of the products such as foods, beverages, fabric softeners, perfumes, body deodorants etc. The knowledges and research tools are also useful in regulating the malodor in the air pollution, in developing the public services and in elevating public quality of life.

Researchers

Graduate School of Arts and Letters

Nobuyuki Sakai

[Food Poisoning]

Development of a Novel Quantification Method for Diarrhetic Schell Fish Poisoning

特徴・独自性
  • We have investigated isolation and structure determination of natural products and evaluated mode of their actions. We have especially focused on marine natural products causative for a food poisoning, diarrheic shellfish poisoning (DSP), which has spread worldwide and threatened regional fishery industry. Dinophysistoxin produced by the dinoflagellate Dinophysis spp. and okadaic acid, are thought to be responsible for DSP. Acute toxicity test using mice has been the primary method for detection of DSP in the fish market, though an alternative method to quantify DSP without sacrificing mice has been requested. We isolated OABP2, a novel okadaic acid binding protein, from the marine sponge Halichondria okadai and succeeded in expression of the recombinant OABP2 in E. coli, which eventually showed high affinity to the DSP toxins.
実用化イメージ

We are now working on visualization of OA by utilizing OABP2 in order to provide an easy and quick quantification method for DSP.

Researchers

Graduate School of Agricultural Science

Keiichi Konoki

[FPD]

Development of Interconnect Materials and Processes for High Performance and High Reliability Electric Devices

NEXT
PREV
特徴・独自性
  • Electronic products can be operated not only by semiconductors but also by metal interconnections attached to the semiconductors. Required properties for the metal interconnections are ohmic contact, diffusion barrier property, adhesion with semiconductors, and low resistivity, corrosion resistance, process reliability. Our group has committed ourselves to develop new metals and processes to meet the needs of wide-ranged device producers with consideration of cost performance. Topics of our research include (1) Cu alloys to self-form a diffusion barrier layer in multilayer interconnection of Si devices, (2) Cu alloys to form a reaction-doping layer in IGZO oxide semiconductors, (3) Nb alloys to achieve mechanical and thermal reliability with good ohmic property for SiC power devices, (4) Cu alloys for transparent conductive oxide such as ITO, (5) screen-printable Cu paste lines for solar cells, etc..
実用化イメージ

Our research efforts are targeted at metallization and interconnections for advanced LSI, flat panel displays, touch panels, power modules, solar cells, and other electronic devices. Collaborators include material producers, equipment vendors, and device producers in the entire value chain of electronic products.

Researchers

New Industry Creation Hatchery Center

Junichi Koike

[Fracture mechanics]

Development of integrated safety management technology for hydrogen energy systems

NEXT
PREV
特徴・独自性
  • To investigate the diffusion and combustion phenomena of reactive hydrogen gas leakage when a high-pressure hydrogen tank fails due to crack propagation caused by an initial defect, we have developed a coupled analysis method that simultaneously analyzes the material structure and reactive turbulent multiphase flow through an interdisciplinary research approach. Furthermore, we have developed a new numerical prediction method related to the diffusion flow characteristics and combustion limits of hydrogen leaking due to crack propagation failure of high-pressure tank bulkheads.
実用化イメージ

We contribute to the design of hydrogen storage containers for various types of transportation equipment and the development of safety guidelines and risk management for hydrogen station configurations.

Researchers

Institute of Fluid Science

Jun Ishimoto

[FRCC]

[free molding]

Glass that conducts heat well

NEXT
PREV
概要

We aim to give high thermal conductivity to glass, which is known as a material that does not conduct heat well, and to apply it to new fields.

従来技術との比較

If mixed with a high thermal conductive material, glass can be a good conductor of heat. However, all the advantages of glass, such as transparency and freedom of molding, are lost. In this research, we succeeded in developing a transparent glass with high thermal conductivity that retains its glassiness by adopting the strategies of high thermal conductivity MgO deposition and refractive index matching.

特徴・独自性
  • Transparent
  • Free molding
  • Thermal conductivity ~ 3 W/(m K) [300% of that of window glass]
実用化イメージ

Heat dissipation management using glass [heat dissipating glass substrates, lenses, fibers, etc.]

Researchers

Graduate School of Engineering

Nobuaki Terakado

[Fuel]

Quantitative analysis of microstructure in nuclear materials by week-beam scanning transmission electron microscopy

概要

We have developed a technique for quantitative analysis of microstructures (e.g., dislocations and irradiation defect aggregates) of activated and nuclear-burned specimens in the context of the Week Beam Scanning Transmission Electron Microscope (WB-STEM) method, which boasts extremely high measurement accuracy as a quantitative analysis method for lattice defects.
In combination with a dedicated heated sample holder with fully automated temperature measurement and current control in a cartridge-type heating furnace, changes in dislocation microstructure can be dynamically measured in-situ along with a highly reliable temperature history.

従来技術との比較

Conventional TEM methods require expertise in reciprocal space and dislocation theory, but our WB-STEM method is equipped with automatic analysis software for film thickness measurement and dislocation loop feature extraction, making it possible to analyze irradiation defects easily and precisely.

特徴・独自性
  • Since its design, the WB-STEM method has been developed for implementation and on-site repair in radiation controlled areas where nuclear materials are handled, with special aperture and diffraction disc selection equipment, control and analysis software.
  • WB-STEM accepts irradiation defect analysis of activated specimens from all over the world, including RPV monitoring specimens from European reactors and neutron-irradiated materials from US research reactors.
  • It is also used to analyze the properties of iron-containing nuclear fuel simulated debris in decommissioning projects.
実用化イメージ

We support research organizations that currently use transmission electron microscopy to observe microstructures to introduce the WB-STEM method by special modification. We will instruct researchers who have no experience using transmission electron microscopy in the procedure for dislocation analysis.

Researchers

Institute for Materials Research

Kenta Yoshida

[fuel cell]

“HYDRIDE" Researches for Energy Applications

NEXT
PREV
特徴・独自性
  • This group is engaged in basic and applied researches of "hydrides" for practical use in hydrogen energy system. The main subject is the exploration of advanced hydrogen storage materials which support hydrogen energy technologies such as fuel cells. Currently, we synthesize a wide variety of novel hydrides composed of lightweight metals with specific nano-structures using advanced techniques for crystal and electronic structure analyses. In addition to the hydrogen storage, we develop the wide research fields related to hydrides, such as fast lithium ionic conductors.
実用化イメージ

Besides the contributions in industrial progress through the material development for future hydrogen energy system and next-generation secondary battery, we positively provide technical assistance to organizations and companies concerned about our findings.

Researchers

Advanced Institute for Materials Research

Shin-Ichi Orimo

Quantum and Molecular Dynamic Simulations of Transport Phenomena in Fuel Cell

NEXT
PREV
特徴・独自性
  • It is necessary to grasp nanoscale transport phenomena of materials in polymer electrolyte fuel cell to improve its performance. In our laboratory, nanoscale transport phenomena are analyzed by large scale molecular dynamics simulations using a supercomputer system. As the present theme, the dependence of the materials or structures of polymer electrolyte membrane on the ability of proton transfer(Fig. 1), the ability of proton transfer or oxygen permeability of ionomer in catalyst layer(Fig. 2), and the mechanism of transport phenomena of a water droplet in a nano pore in gas diffusion layer or micro porous layer(Fig. 3), are analyzed in detail.
実用化イメージ

These research can be applied to the analysis of flow field in devices which have nanoscale structure, for instance, fabrication process of semiconductor, friction phenomena of such nanoscale devices or next generation batteries, as well as the field of fuel cell.

Researchers

Institute of Fluid Science

Takashi Tokumasu

Development of Solid-State-Ionics Materials for Energy Conversion, Storage and Utilization

NEXT
PREV
特徴・独自性
  • Our focus is on the development of solid-state-ionics materials to be used for a variety of energy conversion systems. To further improve the performance of fuel cells and lithium batteries, novel ionic conductors and mixed conductors with high ionic conductivity and chemical stability are highly demanded. We have been developing such the materials based on defect chemistry and thermodynamics of ceramics, and trying to apply those materials to actual energy conversion devices.
実用化イメージ

To date, a hydrogen production system utilizing oxygen permeable membranes and an all-solid-state battery have been prepared.

Researchers

Graduate School of Engineering

Hitoshi Takamura

Fuel Cell and Energy Storage Using Ion Conduction in Ceramics

NEXT
PREV
特徴・独自性
  • Solid oxide fuel cell is a highly efficient power generation system operating at high temperatures using ion conducting ceramics. We conduct basic and multi-aspect research on the electrochemical and mechanical behaviors of the materials for further improving the efficiency, cost, and reliability of solid oxide fuel cells. We are also interested in the reverse operation of fuel cells which enables the storage of the electricity from renewable sources into hydrogen or methane, etc.
実用化イメージ

Researchers

Graduate School of Environmental Studies

Tatsuya Kawada

Bio-inspired engineering for energy and biological applications

NEXT
PREV
特徴・独自性
  • Our goal is "bio-inspired engineering" to create new functions that exhibit functions beyond the nature systems by learning from their superior functions and incorporating them into creating materials and devices. For example, the development of surface treatment and adhesives learned from mussels, the development of anti-biofouling substrates learned from pitcher plants, the design of non-platinum catalysts for highly active fuel cells (hydrogen, enzymes, microbes, etc.) learned from hemoglobin, and needle-type biosensors learned from biological needles.
実用化イメージ

Based on electrochemistry and polymer chemistry, I provide technologies and expertise in the energy, biotechnology, and electrical and electronic fields, including metal-air batteries, fuel cells, surface treatment, adhesion, biosensors, etc.

Researchers

Frontier Research Institute for Interdisciplinary Sciences

Hiroya Abe

Metal complex catalysts for energy devices

NEXT
PREV
特徴・独自性
  • We have developed a new catalyst for fuel cells and metal-air batteries with using metal azaphthalocyanine unimolecular layer (AZUL) adsorbed on carbon materials. We applied it to variety of applications in the field of energy conversion and next generation energy devices.
実用化イメージ

Industries relating with energy and mobilities.

Researchers

Advanced Institute for Materials Research

Hiroshi Yabu

[Function Integration]

Novel-Concept Silicon Integrated Circuits Derived from the 3-Dimensional Device, Circuit and Architecture

NEXT
PREV
特徴・独自性
  • In recent year, facing the age of nanoscale engineering, the new technologies of device, circuit and architecture supported by novel physical guidance principles are highly expected, just as the similar situation as the predawn of semiconductor technology when Bardeen and Shockley discovered the secret of transistors. Therefore, in our research approach, the architectures, circuits, devices and CAD design tools for nanoscale LSI are systematically investigated in the following three main research subjects.
  • 1. Study on nanoscale device and circuit
  • Aiming at the nanoscale silicon semiconductor integrated circuit, we are mainly working on the following directions for new devices and circuits:
  • ①Analysis for novel physical phenomenon based on nanostructural effects
  • ②Device and circuit technology with new operating principle
  • ③Restraint technology for increasing variability of device characteristics
  • ④Architecture and circuit technology for robust information processing
  • 2. Study on the 3-dimention-structual device and circuit
  • The elementary element of recent LSI with planar-structural devices is coming close to the physical limitation of scaling. In order to break the limit and sustain the evolution of future LSI performance, we have started the research on the novel 3-dimension-structural devices and circuits.
  • 3. research on wireless integrated circuit (IC) based on information transmission
  • The ultracompact lightweight wireless IC is one of essential technologies for realizing the ubiquitous society which has the network available in anywhere, at anytime and from any surrounding items. For example, the IC tags for receiving information with reading function are getting close to the practical applications. In our laboratory, aiming at the automatic operating wireless IC with embedded power supply, we are systematically working on the following directions:
  • ①The electrical power generation and storage devices
  • ②Devices and circuits with Ultralow power consumption
  • ③Sensing devices
  • For all above subjects, We hope to conduct collaborative researches with companies interested in our research.
実用化イメージ

Researchers

Graduate School of Engineering

Tetsuo Endoh

[Functional Bran Imaging]

Smart Ageing Initiative

NEXT
PREV
特徴・独自性
  • In Japan, the percentage of elderly people aged 65 years or over was 23.1% in 2010. It is no doubt that Japan is the world's first super-aging society. In such a super-aging environment, it is necessary to form a society in which each individual can play an active role even as one becomes older in order to maintain and improve the quality of life of all people and to maintain a healthy society. In advanced brain science, research from the fields of brain function imaging, cognitive science, and psychology has been utilized with the aim of realizing a healthy aging society. Up to date information on various new technologies and related discoveries has been disseminated so that individuals can live a healthy life with peace of mind at every stage of aging, while maintaining and improving the health of their brain and mind in a diverse and complex society.
実用化イメージ

We believe to overcome super-aging environments is not only an object of public concern but also big business chances to create new industries.

Researchers

Institute of Development, Aging and Cancer

Ryuta Kawashima