• Top
  • Research Themes

Research Themes - 226 Result(s)

 A

A Microwave-Based Non-Destructive Testing Method for the Long Range Inspection of Metallic Pipe

NEXT
PREV
特徴・独自性
  • We are developing a non-destructive testing method for the long range rapid inspection of metallic pipe using microwaves. The method propagates a microwave inside a pipe, and evaluates flaws appearing at the inner surface of the pipe on the basis of the reflection and transmission of the microwave. The method does not require scanning probes unlike conventional non-destructive methods, which enables one to inspect a pipe quite quickly. Our experimental validations have demonstrated the effectiveness of the method using a pipe as long as 30 m.
実用化イメージ

The NDT method proposed here is applicable when many pipes are inspected or conventional methods are not available due to pipe length and its configuration.

Researchers

Graduate School of Engineering

Hidetoshi Hashizume

A Novel Process for Continuous Production of High Quality Biodiesel with Ion-Exchange Resin Catalysts

NEXT
PREV
特徴・独自性
  • We successfully developed a continuous production process for high-quality biodiesel. This production technology is very simple, just passing through the reactors packed with ion-exchange resins without complicated upstream and downstream processes, which provide additional production cost and environmental stress and the entire process is fully automatic. With this technology, you can easily produce high-quality biodiesel from various cheaper oils with fatty acid content up to 100%.
実用化イメージ

This innovative technology succeeds in solving the serious problems in the current biodiesel production, restriction by shortage of feedstock supply and the unstable quality of biodiesel due to the soap formation. This technology also applies to the production of fatty acid methyl ester, a starting material for surfactant production, which is an important intermediate step in oleochemistry.

Researchers

Graduate School of Engineering

Naomi Kitakawa

Additive Manufacturing of Metallic Parts with Electron Beam Melting (EBM)

NEXT
PREV
特徴・独自性
  • Electron beam melting (EBM) is a type of additive manufacturing technologies. EBM uses electron beam as an energy source to melt metal powder and produce metal thin layers. This sequence is repeated in a layer-by-layer manner to fabricate three-dimensional (3D) components.
  • This technology can produce any kinds of structures based on 3D CAD models and is suitable for custom-made manufacturing.
  • In addition, our recent studies revealed that the unique microstructure, such as directional solidification and uniform dispersions of fine precipitates, are obtained by EBM; this technology is useful to realize advanced materials that cannot be obtained conventional manufacturing.
実用化イメージ

The EBM technology has received much attention for producing metal parts used in biomedical, aerospace and automotive industries.
Rapid prototyping / rapid tooling is one of the applications of this technology.

Researchers

New Industry Creation Hatchery Center

Akihiko Chiba

Advanced Analysis of Socio-Economical Data for Capturing Social Needs

NEXT
PREV
特徴・独自性
  • We have proposed advanced methods of behavior analysis for public transport service.
  • They include a demand composition based on the automatically mesured traffic data, estimation of true demand partly unrealized by the congestion, and intense usage of geographical data. These methods may be applicable for behavior analysis besides transport service.
実用化イメージ

We welcome cooperative research on demand analysis of public services, as well as needs analysis for new goods and services.

Researchers

International Research Institute of Disaster Science

Makoto Okumura

Advanced Control of Microstructure and Property of Structural Metallic Materials

NEXT
PREV
特徴・独自性
  • Microstructure represents various kinds of heterogeneities in the metallic materials, i.e., grains, component phase, lattice defects and chemical inhomogeneity such as impurity/alloying elements. It can be modified through control of phase transformation/precipitation and deformation/recrystallization by adjusting compositions of materials and/or through processing routes (heat treatment, deformation). Such expertise in micro/nanostructure control is very important in production of current materials from viewpoints of energy saving and recycling in structural materials such as steels and titanium alloys.
  • We attempt to apply more advanced control of micro/nanostructures, such as atomic structures of crystalline interfaces, chemistory in an atomic scale (e.g., segregation) and so on. Fundamentals of microstructure formation (thermodynamics, kinetics, crystallography) are examined both theoretically and experimentally to clarify key factors for microstructure control. Another important aspect in our research is the improvement of mechanical property by microstructure manipulation.
実用化イメージ

Possibilities to establish new functions (e.g., superplasticity, shape memory/superelasticity) as well as superior mechanical properties (e.g., ultrahigh strength with high toughness/ductility) is also explored.

Researchers

Institute for Materials Research

Tadashi Furuhara

Advanced die casting process computing with solidification phenomena

NEXT
PREV
特徴・独自性
  • Die casting is a method of mass-producing high-precision castings in a short time by filling the mold with molten metal at high pressure and high speed. Since solidification is completed quickly under high pressure, various defects peculiar to die casting occur. Significantly, the casting cavity has a high incidence in die casting, and it is a factor that hinders the quality. Therefore, a numerical approach to the die casting process is expected to prevent these problems, and the information obtained from the numerical analysis is expected to be reflected in the casting plan to reduce the number of prototypes, the lead time to product development, and the cost. In this study, a multiphase flow analysis with solidification phenomena of molten aluminum inside mold was conducted for a high-pressure die casting process of the throttle body.
実用化イメージ

Automotive industry, Automotive suppliers, Foundry industry

Researchers

Institute of Fluid Science

Jun Ishimoto

Advanced Educational Environment with Interactive Instruction System IMPRESSION

NEXT
PREV
特徴・独自性
  • IMPRESSION is an interactive instruction system for both face-to-face lesson and distance education.
  • It was designed to facilitate teachers to plan and perform effective and attractive lessons with various multimedia materials, and help to evaluate performed lessons and improve them based on the double loop instructional design process, which is focusing on interaction between a teacher and students.
実用化イメージ

It could be used to perform advanced education with multimedia materials in schools, and also to design and implement training for employees at branch offices.

Researchers

Center for Data-driven Science and Artificial Intelligence

Takashi Mitsuishi

Advanced Molecular Transformations by Organocatalysts

NEXT
PREV
特徴・独自性
  • The development of organic molecules which function as a catalyst has been extensively investigated to achieve selective and efficient transformation of organic molecules. Brønsted acids and bases are commonly employed as the catalyst in synthetic organic chemistry. To aim at their functionalization, axially chiral phosphoric acids and axially chiral guanidine bases have been developed as chiral Brønsted acid and base catalysts, respectively. A variety of optically active compounds has been synthesized through the development of highly stereoselective reactions using these catalysts.
実用化イメージ

The development of chiral Brønsted acid and base catalysts has been accomplished as recoverable and reusable organocatalysts and highly stereoselective molecular transformations have been established using these catalysts. The present methodology is applicable to process chemistry in preparing medicines and relevant compounds on the basis of the selective and efficient molecular transformations thus developed with reduction of the waste material.

Researchers

Graduate School of Science

Masahiro Terada

Advanced Nanotechnology for Critical metal free secondary battery

NEXT
PREV
特徴・独自性
  • Monoatomic layered materials of Graphene, Transition metal sulfide nanosheet, nanocrystalline active materials, nanoparticles and nanoporous materials are investigated for realizing high capacity, high power, high safety and low cost energy storage devices as a post- Lithium ion battery. Advanced chemistry of functional materials and device processes for All solid state battery, Magnesium battery, fuel cells, supercapacitor and wearable batteries are investigated.
実用化イメージ

Academia – Industry collaboration with manufacturing companies of functional materials, batteries, and also smart grid, renewable energy, electrical power companies are encouraged for developments of advanced energy materials and post-Lithium ion battery.

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Itaru Homma

Advanced Technology on Flexible Liquid Crystal Displays

NEXT
PREV
特徴・独自性
  • Flexible liquid crystal displays using thin plastic film substrates instead of glass substrates contained in current liquid crystal displays, are bendable, thin, lightweight, and do not crack, and generate new usage styles and human interfaces due to their excellent storability and portability. We have been researching the basic technologies for large-screen and high-quality flexible displays using functional organic materials including liquid crystal and polymer, so that anyone can enjoy fertile information services.
実用化イメージ

We hope to conduct collaborative research with a willing company in industry, for development and practical application of the advanced flexible display technologies.

Researchers

Graduate School of Engineering

Hideo Fujikake

Advanced Vision System with Less Calibration

NEXT
PREV
特徴・独自性
  • The difficulties of introducing robot systems in production line are maintenance of environment and teaching of robot motion. Environ recognition and motion teaching using vision system will greatly improve the difficulties. However, calibration of vision-robot system is tedious and troublesome. Feedback control using vision sensor information will allow robustness against environment and teach by showing. This technique is called visual servo.
実用化イメージ

Visual servo will allow flexible camera setting, calibration-less system setting, and easy teaching.

Researchers

Graduate School of Information Sciences

Koichi Hashimoto

Advanced Wireless Information Technology

NEXT
PREV
特徴・独自性
  • Toward the realization of a ubiquitous and broad-band wireless network, we are actively engaged in the research work on dependable and low power consumption advanced wireless IT. We cover the whole technical fields from the lower to higher layers, i.e., signal processing, RF/Mixed signal device, antenna, MODEM and network technologies.As the studies on signal processing, RF/Mixed signal device and antenna technologies, we are developing RF/Millimeter-wave RF CMOS IC's, antenna integrated 3-dimensional system in package (SiP) transceiver modules, digital/RF mixed signal IC's.
実用化イメージ

If you are interested in a collaborative research work on above topics, please contact us via e-mail.

Researchers

Research Institute of Electrical Communication

Noriharu Suematsu

Amyotrophic lateral sclerosis (ALS),Muscular dystrophy,Distal myopathy with rimmed vacuoles (DMRV)/ GNE myopathy

特徴・独自性
  • GNE myopathy, a type of distal myopathy, is a rare disease and a designated intractable disease in which muscles atrophy and degenerate starting from areas distant from the trunk, gradually depriving the body of freedom. Patients with this disease have mutations in the gene for an enzyme called GNE and cannot synthesize sialic acid, including aceneuramic acid. At the Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, a model mouse was created, and preventive effects were obtained through oral administration of aceneuramic acid.
  • In response to this, the field of neurology conducted the world's first physician-initiated Phase I clinical trial in 2010-2011, establishing safety. After physician-initiated Phase II/III trials, extension trials, and efficacy confirmation trials, Nobel Pharma obtained manufacturing and marketing approval for the product named Acenobel® in March 2024. In the future, it is expected that the know-how gained from this seed in creating registries and protocols will be utilized to advance the development of treatments targeting other sialic acid supplements, viral vectors, and oxidative stress.
実用化イメージ

Researchers

Graduate School of Medicine

Masashi Aoki

Analysis of Biological Signals and Visualization

NEXT
PREV
特徴・独自性
  • Recent development of sensor technology and ICT have enabled collection and acculumation of huge amount and wide variety of biological data. We have been investigating analysis and processing methods of the biological data for supporting clinical diagnosis and health care. For example, development of extraction algorithm of fetal electrocardiogram from maternal abdominal siglnals, and estimation and visualization algorithms of status of autonomic functions based on diverse biological signals.
実用化イメージ

System development of biosignal anaysis, visualization, and diagnosis.
Development of monitoring and evaluation methods of alertness and sleepiness of traffic driver and workers.
Shift work scheduling based on circadian clock.

Researchers

Unprecedented-scale Data Analytics Center

Mitsuyuki Nakao

Application of Nuroimaging Technique to Interface Evaluation

NEXT
PREV
特徴・独自性
  • Nuclear power plants, chemical plants, ironworks and smelters, aircrafts and others that involve large-scale and complex systems yield many benefits to society and daily life, but a serious accident in such systems may result in dire consequences and significant damage. As long as there is human intervention of any kind, it is difficult to completely avoid human error. In light of this, it is crucial to have the mindset of "to err is human, (to forgive divine)." Takahashi Laboratory advocates the improvement of safety based on the harmonization of humans, machines and the environment. The object of our research is the human. Incorporating neuroscience approach and knowledge, we probe into human cognitive and behavioral traits and reflect our findings back into our research with the cooperation of this university's Institute of Development, Aging and Cancer as well as practicing specialists and technical experts. Through our broad vision, flexible mindset and creativity, we pioneer interfaces between humans and systems where safety is ingrained.
実用化イメージ

The core of our research is the examination and understanding of the human factor to be taken into account for the safe and efficient operation of large scale, complex systems, and we are involved in the research of a wide array of subjects not limited to nuclear energy systems but air traffic control operations, man-machine interfaces, cyber security, standardization of rules among others.

Researchers

Graduate School of Engineering

Makoto Takahashi

Applying Blended Learning to Special Needs Education

NEXT
PREV
特徴・独自性
  • I am interested in the human communication process and the man-machine interaction in some educational situation. I conducted interviews, questionnaires, behavior observations and experiments of students with special educational needs, their parents and teachers to investigate the needs, accessibility, usability, efficacy and its factors of blended learning and digital learning materials.
実用化イメージ

The outcomes of our research will make contribution to the design and development of teaching/learning materials and methods.

Researchers

Graduate School of Education

Masayuki Kumai

Assessment of Physical Activities Using Wearable Sensors

NEXT
PREV
特徴・独自性
  • Maintaining appropriate amount of physical activity is essential for health and disease prevention. Gait is the most common type of physical activity in everyday life. Monitoring the amount of physical activity in everyday lives may benefit mainly those who are at threat of metabolic syndrome and overweight. Towards better estimation of the amount of physical activity utilizing wearable sensors, we focused on taking running and walking economy into account. The relationship between step length and oxygen uptake was first determined. Step length estimation with moderate accuracy was accomplished using acceleration signals during walking. Step length was then taken into energy expenditure calculation as one of the variables.
実用化イメージ

Together with the basic version of the current locomotion monitoring system capable of counting staircase climbing up & down, we managed to upgrade our locomotion monitoring system into 3 dimensional.

Researchers

Head Office of Enterprise Partnerships

Ryoichi Nagatomi

 B

Bio-Hybrid MEMS for Medical, Environmental and Food Engineering

NEXT
PREV
特徴・独自性
  • We have developed original manufacturing techniques for bio-hybrid MEMSs that utilize special functions of bio-elements, proteins and living cells, for molecular selective sensing and power generation from natural fuels.
  • (1) Conducting polymer electrodes printed on hydrogels (image 1)
  • (2) Dynamic control of bio-adhesion by electrochemical means (image 2)
  • (3) Micro Biofuel Cells with flexible enzyme electrode patches (image 3)
実用化イメージ

We hope to conduct collaborative research with a willing company for a practical application of these technologies in industry.

Researchers

Graduate School of Engineering

Matsuhiko Nishizawa

Bio-inspired engineering for energy and biological applications

NEXT
PREV
特徴・独自性
  • Our goal is "bio-inspired engineering" to create new functions that exhibit functions beyond the nature systems by learning from their superior functions and incorporating them into creating materials and devices. For example, the development of surface treatment and adhesives learned from mussels, the development of anti-biofouling substrates learned from pitcher plants, the design of non-platinum catalysts for highly active fuel cells (hydrogen, enzymes, microbes, etc.) learned from hemoglobin, and needle-type biosensors learned from biological needles.
実用化イメージ

Based on electrochemistry and polymer chemistry, I provide technologies and expertise in the energy, biotechnology, and electrical and electronic fields, including metal-air batteries, fuel cells, surface treatment, adhesion, biosensors, etc.

Researchers

Frontier Research Institute for Interdisciplinary Sciences

Hiroya Abe

Biological Application of Scanning Probe Microscope

NEXT
PREV
特徴・独自性
  • We have invented a unique method to non-invasively evaluate the quality of individual mammalian embryos based on oxygen consumption. A Pt microelectrode was scanned near the single embryo sample to obtain oxygen concentration profile. Respiration activity of single embryo was estimated based on spherical diffusion theory. Further, it was found that the respiration activities of individual embryos corresponded the developmental potential of the embryos. Independently, we have developed a procedure of mRNA quantification from single-cell based on SPM featuring multi-functional probes. Next, we are going to combine the two methods mentioned above for quality control of mammalian embryos and embryonic stem cells.
実用化イメージ

Our methods will be applied for assisted reprodictive technoloy (ART), pancreatic islet transplantation, or animal breeding.

Researchers

Graduate School of Engineering

Hitoshi Shiku