- 特徴・独自性
-
- Organocatalyst is a synthetically useful catalyst in synthetic organic chemistry, because of the several merits. We have been investigating the development of new and efficient organocatalysts derived from proline. We have already reported the diphenylprolinol silyl ether, which is called as a Jorgensen-Hayashi catalyst, and siloxyproline, which is effective in the presence of water. We have also developed several practical asymmetric catalytic reactions based on the organocatalysts. We also applied these reactions to the total synthesis of natural products and drugs. We have already synthesized Tamiflu in one-pot reaction, and prostaglandin E1 methyl ester via three one-pot procedure.
- 実用化イメージ
-
Our newly developed reactions using organocatalysis can be widely used for synthesis of medicines, agrichemicals, and chemical products.
Researchers
Graduate School of Science
Yujiro Hayashi
|
- 特徴・独自性
-
- Plasma sterilization has been developed as an alternative sterilization method due to its chemical activity, operation at low temperature and atmospheric pressure, low power consumption, low cost and safety. We have studied a mechanism of chemical species generation and transport in a plasma flow and, the sterilization efficacy and mechanism for several plasma sources at atmospheric pressure, such as a microwave plasma flow, a dielectric barrier discharge in a tube and a water vapor plasma flow. We already clarified that the damages of outer membrane and destructions of the cytoplasmic membrane of Escherichia coli by exposure to the microwave plasma flow. Fig. 1 shows the effect of plasma exposure on the E. coli. When the E. coli was exposed to the plasma, the height of the E. coli decreased and the potassium leakage of cytoplasmic material increased. For sterilization in a tube, we also clarified that an induced flow in the narrow tube by DBD transports chemical species and sterilize the whole inside surface of a tube as shown in Fig. 2. We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.
- 実用化イメージ
-
Researchers
Institute of Fluid Science
Takehiko Sato
|
- 特徴・独自性
-
- Novel bone substitute biomaterials should have a property not only to support cellular attachment on the material surfaces but also activate cellular function of osteoblasts that promote regeneration of bone tissue. Our laboratory successfully developed such materials composed of octacalcium phosphate (OCP) (Suzuki O et al. Dent Mater J 39:187, 2020. doi: 10.4012/dmj.2020-001), obtained by a restricted synthesis condition originally developed, with specific crystal characteristics, and various natural polymers, such as gelatin, collagen, alginate and hyaluronic acid. The materials consist from OCP and these polymers are capable of enhancing new bone formation concomitant with their own biodegradations. The concept to develop such materials is that (1) design of reaction of calcium phosphate ceramics and the synthesis; (2) design of material strength to meet the mechanical stress from living body; (3) selection of natural and synthetic polymer materials for the calcium phosphate ceramics. Furthermore, we are conducting research to improve the ability of OCP itself to replace new bone (Suzuki O et al. Acta Biomater 158:1, 2023).
- 実用化イメージ
-
We are prepared to provide academic consultations to companies interested in our research.
Researchers
Graduate School of Dentistry
Osamu Suzuki
|
- 特徴・独自性
-
- Our research target is mainly focused on the topic of development of novel scintillator crystals, piezoelectric crystals, growth technology, characterization and its device application.
- We design and synthesize new materials from a view point of Crystal Chemistry, and investigate their structure and physical properties. We also study on photo-detector, as suitable photo-detector fully contribute to get maximum signal from scintillator. This activity is very important to realize practical application of our developed materials. Recently, piezoelectric material and high melting temperature alloy project is also started.
- 実用化イメージ
-
For the purpose of "real" contribution to human culture, we are always carrying out our research activity considering the industrial application. This point is unique feature of our attitude toward science.
Researchers
Institute for Materials Research
Akira Yoshikawa
|
- 特徴・独自性
-
- Nanoporous metals have drawn considerable attention due to their highly functional properties. They are generally produced by selective dissolution of elements from a multicomponent alloy (known as the dealloying method). As this method is based on differences in the electrode potential of each element present in the alloy, and this potential is high for noble metals, porous structure can be obtained only for noble metals. Recently we have found a new, simple and easy dealloying method without using aqueous solution, which enable us to develop an open nanoporous non-oxidized metallic material even with base metals (such as Ti, Ni, Cr, Fe, Mo, etc), metalloids and their alloys.
- 実用化イメージ
-
This technique is very powerful for developing new functional electrodes, catalysts, filters as well for removing toxic metallic element from the surface of biomaterials containing the toxic element.
Researchers
Institute for Materials Research
Hidemi Kato
|
- 特徴・独自性
-
- Optical fiber-based endoscopic systems for non-invasive treatment and diagnosis are developed. The fiber transmits high-powered laser light for treatment and low-powered light for diagnosis. We develop treatment and diagnosis systems utilizing not only common glass-based optical fibers but hollow-optical fibers. Hollow optical fibers deliver high-powered infrared lasers and light with wide range of wavelength from ultraviolet and far infrared.
- 実用化イメージ
-
Our potential collaborators will be medical device manufactures, as well as any electronic device, communication device, and measurement instrument manufactures considering new entry to the field.
Researchers
Graduate School of Biomedical Engineering
Yuji Matsuura
|
- 特徴・独自性
-
- Millimeter wave (MM-wave) which is one of the electromagnetic wave transparent the clothes, the fire and the wall etc. and all natural materials including objects in clothes always radiate the electromagnetic wave as the thermal noise. Using these characteristics of MM-wave, imaging of concealed objects in clothes can be accomplished in a noninvasive and noncontact manner. This technique is called Passive Millimeter Wave (PMMW) Imaging technique and we have developed a PMMW imaging device for security applications.
- The wave length of MM-wave frequency range is from 1 mm to 10 mm and the spatial resolution of images in MM-wave range is low compared with sub-millimeter (terahertz) range or Infra-Red range, however, higher transmittance through clothes can be obtained compared with higher frequency range. Furthermore, low noise amplifier (LNA) exists which could be the advantage of MM-wave compared with higher frequency ranges.
- Now the device was developed for the purpose of keeping safe and secure aircrafts and ships etc., we hope to conduct collaborative research with a willing company for a practical application of this technology in industrial fields such as the fire rescue, the police equipment and the medical devices.
- 実用化イメージ
-
Researchers
Graduate School of Engineering
Hiroyasu Sato
|
- 特徴・独自性
-
- All the living organisms generate energy from molecular oxygen to maintain their own lives. Once the concentration of oxygen falls down, life activity gets severely hampered and it could sometimes cause death. Typical examples that are related to local hypoxia are ischemic heart disease, stroke and kidney disease.
- We focus on the function of prolyl hydroxylase (PHD) as a sensor to detect the hypoxia, and we are developing drugs to treat ischemic injury by controlling hypoxia.
- 実用化イメージ
-
Currently, we have several compounds that inhibit the PHD. We want to commercialize in conjunction with pharmaceutical companies in Japan and overseas, advancing our non-clinical studies for clinical development.
Researchers
Graduate School of Medicine
Toshio Miyata
|
- 特徴・独自性
-
- We have been exploring novel thermoelectric materials. Functions of a solid substance primarily depend on the electronic structure, directly derived from its crystal structure. Through high-quality structure analyses using neutron and X-ray diffraction, combined with first-principles calculations, we have been fabricating materials with desired functions. To date, more than 40 novel materials have been discovered based on our guiding principles.
- 実用化イメージ
-
For developing future device technologies, challenges on thin-film thermionic multilayers and organic thermoelectric materials are currently underway.
Researchers
Graduate School of Engineering
Yuzuru Miyazaki
|
- 特徴・独自性
-
- Marfan’s syndrome (MF) is a severe, systemic disorder of connective tissue formation. A variety of MFS therapies have been developed, including surgical therapy for aortic root aneurysm and dissection (AAD) that are life-threatening, traditional medical therapies such as β-adrenergic receptor or angiotensin II receptor blockers for slow aortic growth and to decrease the risk of AAD. However these treatments did not prevent tissue destruction in the AAD of MF. To develop preventive strategy for AAD, it will be necessary to identify molecular mechanisms of microfibril formation and an appropriate fibrillin-1 microfibril associated molecule. Recently, ADAMTSL6β, which is a microfibril-associated extracellular matrix protein contributes the regeneration of microfibril by promoting fibrillin-microfibril assembly. We try to develop ADAMTSL6β as a preventive medicine for AAD of MF by regeneration of fibrillin-1 microfibril assembly.
- 実用化イメージ
-
Researchers
Graduate School of Dentistry
Masahiro Saito
|
- 特徴・独自性
-
- Eleven strains of recombinant inbred (RI) mice derived from MRL/lpr and C3H/lpr mice were established. This RI is the only one in the world that randomly develops lesions such as nephritis, arthritis, sialadenitis, vasculitis, and production of autoantibodies in each strain. The genomes of the two strains of mice are randomly held in homozygous condition, and the phenotypes of each strain and the effects of administered drugs could be compared based on their genotype maps. It is possible to identify the regions of gene loci involved in the phenotype and drug sensitivity.
- 実用化イメージ
-
Development of diagnostic and therapeutic agents for autoimmune diseases. It can be applied to the elucidation of the mechanism of onset of immunological adverse events caused by immune checkpoint inhibitors and the development of drugs to prevent the onset of such events, and industry-academia collaboration with pharmaceutical companies, test reagent companies, etc. is possible.
Researchers
Graduate School of Biomedical Engineering
Tetsuya Kodama
|
- 特徴・独自性
-
- The recycling rate of construction muds and sludge is very low because the water content of these muds is very high and direct reuse of them is very difficult. Therefore, a new recycling technology for high-water content sludge has been developed in this laboratory. This technology is called "Fiber-Cement-Stabilized Soil Method", and it uses fiber materials and cement. The main feature of this method is to mix the fiber materials with the sludge, and the fiber materials included in the soil produce several geotechnical merits.
- 実用化イメージ
-
The modified soils produced by this method can be used as ground materials for reinforced embankment of the river bank and soil structures because they have several features such as high failure strength, high failure strain high durability for drying and wetting and high dynamic strength.
Researchers
Graduate School of Environmental Studies
Hiroshi Takahashi
|
- 特徴・独自性
-
- Development of renewable energy systems as well as research on high efficient energy conversion systems is a key technology to solve the global-scale environmental destruction and energy problems. We are working on the research on the advanced technology of renewable energy such as solar energy and hydrogen. Topics of research are two of the following roughly separately.
(1) Development of highly effective thermal energy systems and energy saving systems by using spectral control of thermal radiation.
(2) Aiming at the achievement of the hydrogen energy society, we develop new energy conversion devices based on solid state ionics, and perform feasible studies for solid oxide fuel cells (SOFCs) based on mechanics of materials.
- 実用化イメージ
-
High temperature solar absorption materials
High effieciency solar-termophotovoltaic (STPV) system
Small power source for mobile electric devices based on micro-SOFC
New energy harvesting devices in harsh environment
Researchers
Graduate School of Engineering
Hiroo Yugami
|
- 特徴・独自性
-
- As an idea motivated by the damage mode of the conventional pin bearing that actually occurred, we propose "a new seismic isolation bearing system". In order to clarify the reasonable implementation methodology and structural details that can drastically improve the seismic performance of bridge structures, a fundamental study will be conducted on the dynamic characteristics of bridges featuring such a RIBS by using an idealized mathematical model.
- 実用化イメージ
-
We aim to develop a new type of seismic isolation bearing used in bridge structures. For example, the bearing can be used to replace a damaged bearing after a strong earthquake or to build a new bridge.
Researchers
Graduate School of Engineering
Xinhao He
|
- 特徴・独自性
-
- The research is being focused on measurement of surface forms of precision workpieces and stage motions of precision machines, which are important items for ultra-precision manufacturing and nanomanufacturing. Optical sensors are being developed for measurement of angle and displacement, which are fundamental quantities for manufacturing. Technologies for improvement of the sensor sensitivity and bandwidth, reduction of the sensor size as well as new multi-axis sensing methods are being The research is being focused on measurement of surface forms of precision workpieces and stage motions of precision machines. Optical sensors are being developed for measurement of angle and displacement. A number of scanning-type measuring systems for precision measurement of surface forms and stage motions are also being developed. Error separation algorithms and systems for straightness and roundness, which are the most fundamental geometries treated in ultra-precision manufacturing, are being investigated. Novel systems based on scanning probe microscopy are under development for micro- and nano-structures as well as freeform optics in responding to new and important challenges from ultra-precision manufacturing and nanomanufacturing.
- 実用化イメージ
-
The multi-axis optical displacement and angle sensors developed in the laboratory are expected to measure motions of semiconductor/IC manufacturing and inspection equipment, precision machine tools, ultra-precision measuring instrument. The surface profile measurement systems are expected t play an important role in ultra-precision manufacturing and nanomanufacturing industries.
Researchers
Graduate School of Engineering
I Ko
|
- 特徴・独自性
-
- Our focus is on the development of solid-state-ionics materials to be used for a variety of energy conversion systems. To further improve the performance of fuel cells and lithium batteries, novel ionic conductors and mixed conductors with high ionic conductivity and chemical stability are highly demanded. We have been developing such the materials based on defect chemistry and thermodynamics of ceramics, and trying to apply those materials to actual energy conversion devices.
- 実用化イメージ
-
To date, a hydrogen production system utilizing oxygen permeable membranes and an all-solid-state battery have been prepared.
Researchers
Graduate School of Engineering
Hitoshi Takamura
|
- 特徴・独自性
-
- Our laboratory is focusing in the development of innovative multiphase fluid dynamic methods based on the multiscale integration of massively parallel supercomputing and advanced measurements, and research related to creation of environmentally conscious energy systems. Furthermore, we promote basic research for the creation of risk management science and associated new multiphase flow system directly linked to sustainable energy represented by a high-density hydrogen storage technology.
- 実用化イメージ
-
P2P Hydrogen supply chain, Elastohydrodynamic lubrication, Supercomputing of Laser melting and sputter particle formation, High pressure diecast computing / Automotive industry, Additive manufacturing
Researchers
Institute of Fluid Science
Jun Ishimoto
|
- 特徴・独自性
-
- Terahertz coherent electromagnetic waves are expected to explore the potential application fields of future information and communications technologies. We are developing novel, ultra-broadband integrated signal-processing devices/systems operating in the terahertz frequency regime employing novel semiconductor nano-heterostructures and materials. We are challenging to develop room-temperature operating coherent and intense laser transistors and fast-response and highly sensitive detectors working for the next-generation beyond-5G terahertz wireless communications as well as safety and security terahertz imaging applications.
- A. Ultimately-fast terahertz transistors utilizing graphene, carbon-based new material, and compound semiconductor heterojunction material systems:
- Graphene-based novel terahertz photonics devices, breaking through the limit on conventional technology. Recently we have succeeded in single-mode terahertz lasing in a dual-gate graphene-channel laser transistor device at 100K. Moreover, we have succeeded in room-temperature terahertz coherent amplification in a dual-grating-gate graphene channel transistor promoted by current-driven graphene Dirac plasmon instability. The obtained maximal gain of 9% is four times as high as the quantum efficiency limit when terahertz photons interact directly with graphene electrons without excitation of graphene plasmons. These will be big steps towards realization of an intense, room-temperature operating graphene plasmonic terahertz laser transistors.
- B. Frequency-tunable plasmon-resonant terahertz emitter and detectors and metamaterial circuits:
- By using an original dual-grating-gate high-electron mobility transistor (DGG-HEMT) structure with InP-based material systems record-breaking ultrahigh-sensitive detection of terahertz radiation have been realized at room temperature.
- 実用化イメージ
-
By making full use of these world-leading device/circuit technologies, we are exploring future ultra-broadband 6G- and 7G-class wireless communication systems as well as spectroscopic/imaging systems for safety and security. We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.
Researchers
Research Institute of Electrical Communication
Taiichi Otsuji
|
- 特徴・独自性
-
- We develop technology of the cyclotron accelerator and its application as follows. 1)Ion source (particularly heavy ion source), 2)design of ion optics, 3)device control system for the cyclotron, 4)RF system, 5)detectors for charged particles, gamma ray, and neutron, 6) radiation test by ion and neutron beam.
- 実用化イメージ
-
We have beam lines dedicated to the neutron irradiation and the ion irradiation, respectively. We can provide fast neutron beam (20-70 MeV), and various ion beam such as p, alpha, and heavy ions up to Xe. We also develop a neutron imaging technique using fast neutron.
Researchers
Research Center for Accelerator and Radioisotope Science
Masatoshi Itoh
|
- 特徴・独自性
-
- Recently, with a spread of high definition video streaming services and ubiquitous network, development of high-quality, ultra-realistic and low-power display systems has been demanded. We have been studying physical properties of liquid crystal materials, precise control technique of polarization, high performance liquid crystal display (LCD) devices and its application to the advanced display systems for the realization of new media such as electric paper display and digital signage display, and low-energy society. We established a polarization control technology which realizes a precise control of polarization with liquid crystal materials. By using this world-leading technology, we have been studying the control of the surface alignment of liquid crystal molecules and developed a wide-viewing angle and fast switching liquid crystal display, ultra-high definition field-sequential-color display (Fig. 1), ultra-low power reflective full-color display (Fig. 2) and large-size high-quality display system.
- We are also studying the ultra-realistic display systems such as a spatial 3D display and a multiple directional viewing display based on the precise light control technique as a next generation interactive communication technologies (Fig.3). We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.
- 実用化イメージ
-
Researchers
Graduate School of Engineering
Takahiro Ishinabe
|