• Top
  • Research Themes

Research Themes - 265 Result(s)

 D

Development of Advanced Device and Process Technologies and New Image Sensors

NEXT
PREV
特徴・独自性
  • Toward the ultimate performances of image sensors, advanced research activities are being conducted that cover a wide range of technology fields from cleanroom infrastructure, materials, process equipment, process, device, circuit, assembly, signal processing, measurement/evaluation and reliability. Following technologies have been successfully commercialized:
  • A fast and accurate measurement technology of electrical characteristics for over 1 million transistors
  • A wide dynamic range CMOS image sensor technology capturing images over five decade brightness ranges
  • An ultra-fast CMOS image sensor technology with 10 million frames/sec
実用化イメージ

Followings are available for industry collaborators:
A. 200mm-diameter-wafer silicon device fabrication utilizing the ultra-clean facility including wafer mutual fabrication processing between device manufacturers.
B. Process technology development and various kinds of analyses.
C. Development of new image sensors.

Researchers

New Industry Creation Hatchery Center

Shigetoshi Sugawa

Development of an Industrial Instrument / the Medical Equipment Using the Contactless Power Transmission System

NEXT
PREV
特徴・独自性
  • Using a non-contact power transmission technique, we develop an industrial instrument and the medical equipment. In the industrial instrument, we deal with the wide non-contact electricity transmission of the dozens of kW class from mW class from a small size electric apparatus represented by a cell-phone to the factory carrier device. In addition, we develop the contactless electricity transmission to an artificial heart (TETS) and a functional electrical stimulator (FES) aiming at the exercise of limbs inconvenience person function rebuilding mainly in the medical equipment.
実用化イメージ

We develop soft-heating hyperthermia using the small implantation element which does not need an internal temperature measurement as cancer treatment.

Researchers

International Research Institute of Disaster Science

Hidetoshi Matsuki

Development of an intranodal administration method

NEXT
PREV
特徴・独自性
  • (1) The amount of anticancer drug required to treat one metastatic lymph node is 1/1,000 to 1/10,000 of the systemic dose.
  • (2) The drug can be administered into the lymph node under ultrasound guidance.
  • (3) An international patent has been filed for the solvent of the administered drug.
実用化イメージ

1. Treatment and prophylactic therapy of affiliated lymph nodes in head and neck cancer, breast cancer, etc.
2. Pharmaceutical companies aiming to develop drugs by drug repositioning and generics
3. Medical device manufacturers aiming to develop a dosing system

Researchers

Graduate School of Biomedical Engineering

Tetsuya KODAMA

Development of anti-fibrotic therapies with a cell line from myofibroblasts of fibrotic kidneys

NEXT
PREV
特徴・独自性
  • There are serious unmet medical needs in kidney diseases. Since fibrosis is a common terminal pathology of various kidney diseases and closely related to renal failure, anti-fibrotic therapies are plausible strategies for kidney diseases. Kidney fibrosis progresses with the emergence of myofibroblasts which produce extracellular matrix. We demonstrated that myofibroblasts originate from renal interstitial fibroblasts, which produce the erythroid growth factor erythropoietin, and that the transformation is reversible. To elucidate mechanisms of kidney fibrosis, we have established a cell line derived from myofibroblasts of mouse kidneys. It has been demonstrated that epigenetic interventions restore the cells (Replic cells) to their original fibroblastic features.
実用化イメージ

Replic cells provide useful and precise strategies to identify anti-fibrotic drugs.

Researchers

New Industry Creation Hatchery Center

Norio Suzuki

Development of Atom-scale Spectroscopy Measurement for Nano Materials

NEXT
PREV
特徴・独自性
  • Scanning tunneling microscope (STM) and atomic force microscope (AFM) are among a few microscopes which enable a direct observation of atomic scale structures of materials. If compared with other electron microscope like transmission electron microscope (TEM), the energy of the electron used for STM is very low that has a big advantage of low damage for sample. Thus STM and AFM are regarded as the most important tools to characterize materials in nanotechnology. The research is now developing from a mere observation of the shape of material to the characterization specific properties of materials with an atomic scale resolution. These properties include spin and molecule vibration; well established techniques like ESR/NMR and infrared-spectroscopy requires more than billions of molecules to obtain data, while STM can obtain these data for a single molecule.
  • We are interested following issues and like to have a collaboration with industrial companies.
  • 1. Molecule-scale morphological characterization of soft-material, polymers and bio material.
  • 2. Site specific vibration spectroscopy of molecules with an atomic resolution.
  • 3. Single spin detection with ESR-STM method
  • 4. Developing atom-scale characterization tool
実用化イメージ

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Tadahiro Komeda

Development of Biomedical Micro/Nano Integrated System Using LSI Technology

NEXT
PREV
特徴・独自性
  • Semiconductor neural engineering is a discipline that uses semiconductor process/device/circuit technologies to further understand properties of neural systems and to create novel fusion systems of living body and machine.
実用化イメージ

One of the goals in this laboratory is to establish semiconductor neural engineering and develop biomedical micro/nano integrated systems.
Another goal is to educate the next generation of leaders in biomedical engineering through research including:
1. Intelligent Si neural probe and biomedical signal processing LSI
2. Fully-implantable retinal prosthesis system
3. Bio/nano technology and novel Bio-FET sensor
4. 3-dimensional integration technology and analog/digital LSI design

Researchers

Graduate School of Biomedical Engineering

Tetsu Tanaka

Development of catalytic reaction system for direct synthesis from CO2 and diols

NEXT
PREV
特徴・独自性
  • We found an effective catalyst system composed of CeO2 and 2-cyanopyridine for direct and catalytic polycarbonate formation reaction from CO2 and diols. CeO2 acted as an activator for CO2 and diols, and 2-cyanopyridine shifted the equilibrium in favor of the product side by hydration of 2-cyanopyridine, promoting the reaction. Green polycarbonates can be synthesized by combination of the catalyst system with a technique of diol syntheses from biomass.
実用化イメージ

This catalyst system is effective for direct transformation of CO2, contributing to the effective utilization and emission reduction of CO2. Combination of the catalyst system with a concentration technique of CO2 will bring about much advantage.

Researchers

Graduate School of Engineering

Keiichi Tomishige

Development of Compound Semiconductor Radiation Detectors

NEXT
PREV
特徴・独自性
  • The main research subject of our group is developing material purification methods, crystal growth methods and detector fabrication technologies for compound semiconductor radiation detectors. Our group intensely studies a compound semiconductor, thallium bromide (TlBr), for fabrication of gamma-ray detectors for the advanced radiation applications. The attractive physical properties of TlBr lie in its high atomic number (Tl: 81, Br: 35), high density (7.56 g/cm3) and wide bandgap (2.68 eV). Due to the high atomic number and high density, TlBr exhibits high photon stopping power. The wide bandgap of TlBr permits the device low-noise operation at and above room temperatures.
実用化イメージ

Our group focuses on development of compound semiconductor radiation detectors for advanced radiation applications including ultra-high resolution PET systems, ultra-high resolution SPECT systems, photon counting CT systems and Compton cameras. We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.

Researchers

Graduate School of Engineering

Keitaro Hitomi

Development of devices regulating inter-organ neural network for diabetes therapy

NEXT
PREV
特徴・独自性
  • Diabetes induces several complications, including retinopathy and nephropathy. In patients with type 1 diabetes as well as those with type 2 diabetes, pancreatic beta cells have reportedly decreased. Therefore, regeneration therapy of pancreatic beta cells may be very effective for major populations of diabetic patients. We discovered a neuronal network, from the liver, which selectively elicits pancreatic beta cell proliferation (Science 2008, Fig.). In a murine model with insulin-deficient diabetes, stimulation of this network improved diabetes. Thus, building devices which regulate the inter-organ neuronal network may lead to “regenerative therapy” for diabetes which regenerates pancreatic beta cells in the pancreas using patients’ own cells and patients’ own systems. We hope to conduct collaborative research with a willing company for a practical application of this technology.
実用化イメージ

Researchers

Graduate School of Medicine

Hideki Katagiri

Development of Entangled Photon Sources

NEXT
PREV
特徴・独自性
  • The quantum information and communication technology (QICT) is expected to overcome the difficulties that classical information technology is confronted with. Quantum entanglement carried by photons is one of the most fundamental resources in QICT. We have been developing efficient, high-quality entangled photon sources utilizing semiconductor materials and quasi-phase-matched optical nonlinear devices, with a number of patents awarded.
実用化イメージ

We hope to conduct collaborative research with a willing company for a practical application of this technology.

Researchers

Research Institute of Electrical Communication

Keiichi Edamatsu

Development of Fall-Prevention Footwear Based on Mechanical Analysis of Slip-Related Falls

NEXT
PREV
特徴・独自性
  • The number of fatalities due to falling accidents indoor/outdoor has increased in Japan as well as in other advanced countries. The fatalities due to falling accidents in a year have exceeded those due to traffic accidents in Japan recently. Because more than 80% of the fatalities are elderly people, it is considered an urgent issue to prevent their falling. We have conducted researches on falling during walking due to induced slip, in the contact interface of shoe sole and floor, through tribological and biomechanical approaches. We clarified the required values of static friction coefficient (figure 1), between shoe sole and floor, and how to gait to prevent slipping through kinetic analysis of gait. We also succeeded in the development of a unique footwear outsole having the high-grip property (figure 2) and high slip-resistant concrete pavement blocks (figure 3) through the collaboration with regional companies. We have recently conducted research and development of footwear that is able to prevent falls due to balance loss after slipping.
実用化イメージ

Products for fall prevention in daily life or in work site. Evaluation of slip resistance of footwear and floor materials.

Researchers

Graduate School of Engineering

Takeshi Yamaguchi

Development of High Performance Carbon Nanotube-Alumina Composite

NEXT
PREV
特徴・独自性
  • One of the important challenges in the development of carbon nanotubes (CNTs) reinforced ceramic composites is uniform dispersion of CNTs in the matrix. The mechanical properties of CNT/ceramics composites have been limited to date due to the formation of CNT agglomerates in the composite. We have successfully produced CNT/alumina composites with world top class strength and toughness, by employing a newly developed CNTs dispersion technique based on a flocculation method. The processing method developed in this study enables us to prepare high performance CNT materials using a pressureless sintering method.
実用化イメージ

The possible applications of the CNT/alumina composites developed in this study include tribological materials (ball bearing), biomaterials (artificial hip joint), micro-actuator materials utilizing electrostrictive effects, electromagnetic wave absorber, particularly in the frequency range of several GHz and several ten GHz.

Researchers

New Industry Creation Hatchery Center

Toshiyuki Hashida

Development of High Sensitive Magnetic Sensor Operating at Room Temperature with Tunnel Magnetoresistance Devices

NEXT
PREV
特徴・独自性
  • Recently, many tunnel magnetoresistance devices with high magnetoresistance effect are reported. These are expected to be applied to high sensitive magnetic sensors. There are many magnetic sensors with variety of the mechanism, in order to meet the demand of the very wide range of sensing magnetic field. However, there is no magnetic sensor which has high sensitivity, easy to use, operation at room temperature and low cost. Only a magnetic sensor with tunnel magnetoresistance devices can satisfy all the demand in principle. As the device has very wide range of the sensing magnetic field, it can be designed for any demand to the sensors.
実用化イメージ

For example, this device can sense a bio-magnetic field easily at room temperature, so that it could be replaced SQUID device, which is popular now but is very expensive and not easy to use personally. Therefore, by using this device, we expect we can conduct effective collaborative research in medical field.

Researchers

Graduate School of Engineering

Yasuo Ando

Development of Immunobiotic Evaluation System for Functional Feeds as a Livestock Animal Model

NEXT
PREV
特徴・独自性
  • Pattern recognition receptor (PRR) family plays an important role in the defense through recognition of pathogen-associated molecular patterns or microorganisms-associated molecular patterns (PAMPs/MAMPs).
  • Some functional feed materials are thought to regulate intestinal immunity by contact and stimulation of epithelial cells and immunocompetent cells via PRRs in the gastrointestinal tract and induction of cytokine production. In this "new world" of feed immunology, however, much remains unknown about the underlying mechanisms of intestinal immunity because of lack of appropriate intestinal immunoassay system for livestock animals.
  • We have advanced application of originally established porcine and bovine intestinal epitheliocytes (PIE, BIE) cell lines (see photo) for evaluation of immunobiotics and immunogenics exerting anti-inflammatory responses both in PIE cell monolayer and co-culture system with porcine peyer's patch immune cells as a peyer's patch culture model (see illustration).
実用化イメージ

This evaluation system may also contribute to elucidate immunoregulatory mechanism of immunobiotics and immunogenics mediated by pattern recognition receptors essential to future development of not only immunobiotic feeds but also vaccines using immunobiotics to prevent specific diseases. This can benefit mankind by offering immunobiotic feeds as a safer alternative to conventional antibiotic drug therapy.

Researchers

Graduate School of Agricultural Science

Haruki Kitazawa

Development of integrated safety management technology for hydrogen energy systems

NEXT
PREV
特徴・独自性
  • To investigate the diffusion and combustion phenomena of reactive hydrogen gas leakage when a high-pressure hydrogen tank fails due to crack propagation caused by an initial defect, we have developed a coupled analysis method that simultaneously analyzes the material structure and reactive turbulent multiphase flow through an interdisciplinary research approach. Furthermore, we have developed a new numerical prediction method related to the diffusion flow characteristics and combustion limits of hydrogen leaking due to crack propagation failure of high-pressure tank bulkheads.
実用化イメージ

We contribute to the design of hydrogen storage containers for various types of transportation equipment and the development of safety guidelines and risk management for hydrogen station configurations.

Researchers

Institute of Fluid Science

Jun Ishimoto

Development of Intelligent Molecules for the Regulation of Gene Expression in Cells

NEXT
PREV
特徴・独自性
  • The artificial control of gene expression by synthetic oligodeoxynucleotides (ODNs) has been the subject of considerable interest. In particular, ODNs conjugated with a cross-linking agent have been expected to enhance the inhibitory effect. Recently, microRNAs (miRNA) endogenously expressed small regulatory non-coding RNAs, are recognized as playing a critical role in regulating gene expression and the great concerns have been raised about efficient antisense oligonucleotides against miRNAs. We have already demonstrated that ODNs bearing a 2-amino-6-vinylpurine (2-AVP) derivative exhibited efficient interstrand cross-linking to cytosine selectively. The unique structural features of AVP are to possess both the hydrogen bond donor-acceptor sites as recognition sites and the vinyl group as a reactive moiety in a single molecule. Recently, we have developed of the novel cross-linking agents, which are designed based on the unique structure of AVP. These derivatives can react to thymine at the complementary site with highly selective and efficient under neutral conditions. We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.
実用化イメージ

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Fumi Nagatsugi

Development of Interconnect Materials and Processes for High Performance and High Reliability Electric Devices

NEXT
PREV
特徴・独自性
  • Electronic products can be operated not only by semiconductors but also by metal interconnections attached to the semiconductors. Required properties for the metal interconnections are ohmic contact, diffusion barrier property, adhesion with semiconductors, and low resistivity, corrosion resistance, process reliability. Our group has committed ourselves to develop new metals and processes to meet the needs of wide-ranged device producers with consideration of cost performance. Topics of our research include (1) Cu alloys to self-form a diffusion barrier layer in multilayer interconnection of Si devices, (2) Cu alloys to form a reaction-doping layer in IGZO oxide semiconductors, (3) Nb alloys to achieve mechanical and thermal reliability with good ohmic property for SiC power devices, (4) Cu alloys for transparent conductive oxide such as ITO, (5) screen-printable Cu paste lines for solar cells, etc..
実用化イメージ

Our research efforts are targeted at metallization and interconnections for advanced LSI, flat panel displays, touch panels, power modules, solar cells, and other electronic devices. Collaborators include material producers, equipment vendors, and device producers in the entire value chain of electronic products.

Researchers

Graduate School of Engineering

Junichi Koike

Development of McH-lpr/lpr-RA1 mouse, a study model that spontaneously develops severe autoimmune arthritis, vasculitis, and sialadenitis

NEXT
PREV
特徴・独自性
  • McH/lpr-RA1 mice are recombinant congenic mice descended from MRL/lpr and C3H/lpr mice and develop arthritis, vasculitis, and sialadenitis with high frequency and severity, with severe pannus formation similar to rheumatoid arthritis, polyarteritis nodosa, and Sjogren's syndrome. On the other hand, McH/lpr-RA1 mice do not develop systemic lymphadenopathy and severe nephritis as seen in MRL/lpr mice, so they are easy to breed and maintain and can be used for long-term drug administration experiments.
実用化イメージ

Development of diagnostic and therapeutic agents for collagen diseases. It can be applied to the elucidation of the mechanism of onset of immunological adverse events caused by immune checkpoint inhibitors and the development of drugs to prevent the onset of such events, etc. Industry-academia collaboration with pharmaceutical companies, test reagent companies, etc. is possible.

Researchers

Graduate School of Biomedical Engineering

Tetsuya KODAMA