Tohoku University. Research Profiles

LANGUAGE

"I" Keywords - 70 Result(s)

I

 I

[ICT Use]

ICT Use by Teachers and Students in the Classrooms of Elementary and Secondary Schools

NEXT
PREV
Features

My research focuses on ICT use in the classrooms of elementary and secondary schools in Japan.
When we consider introducing technologies to the classrooms, particularly for the compulsory education in public schools, there are "inevitable issues" around consistency with the educational mission of academic development of school students, practicability and sustainability of the use of technologies for busy teachers, cost economy, and equity in the public education.
My research is characterized by its direction toward empirical approach to the ICT use in consideration of these issues.
In the past, I have been engaged in (1) a research that found the most accepted ICT among teachers was a document camera and the way teachers use it was dependent on each teacher's teaching style, (2) a research on the technology that takes fewer man-hours to develop digital textbooks and other contents, and (3) a development of e-learning materials with which elementary school students can learn key board typing.

Targeted Application(s)/Industry

My research can be applied to a development of teaching support tools for elementary and secondary school teachers which can be used in the classroom and a consulting service to assist development of digital teaching materials for school students.

Graduate School of Information Sciences
HORITA Tatsuya, Professor

[Ignition]

Identification of Ignition and Combustion Characteristics by a Micro Flow Rector with a Temperature Gradient

NEXT
PREV
Features

We have developed a methodology for identifying general ignition and combustion characteristics of gaseous and liquid fuels including bio and synthetic fuels. It enables identification of ignition and combustion characteristics of new fuels prior to application for practical combustion devices. The reactor system consists of a small diameter channel which has a temperature gradient from room temperature to the auto ignition temperature and thus reaction characteristics in different temperature levels can be easily investigated. Such a measurement had required research level skills and special devices such as rapid compression machine or shock tube which is costly in general, however, the micro flow reactor with temperature gradient enables reaction analysis easily.

Targeted Application(s)/Industry

It is expected to contribute to the designing of combustion devices, developments of new fuels, and chemical promoter and inhibitor.

Institute of Fluid Science
MARUTA Kaoru, Professor Doctor of Engineering

[Ignition inhibitor]

Identification of Ignition and Combustion Characteristics by a Micro Flow Rector with a Temperature Gradient

NEXT
PREV
Features

We have developed a methodology for identifying general ignition and combustion characteristics of gaseous and liquid fuels including bio and synthetic fuels. It enables identification of ignition and combustion characteristics of new fuels prior to application for practical combustion devices. The reactor system consists of a small diameter channel which has a temperature gradient from room temperature to the auto ignition temperature and thus reaction characteristics in different temperature levels can be easily investigated. Such a measurement had required research level skills and special devices such as rapid compression machine or shock tube which is costly in general, however, the micro flow reactor with temperature gradient enables reaction analysis easily.

Targeted Application(s)/Industry

It is expected to contribute to the designing of combustion devices, developments of new fuels, and chemical promoter and inhibitor.

Institute of Fluid Science
MARUTA Kaoru, Professor Doctor of Engineering

[Ignition promoter]

Identification of Ignition and Combustion Characteristics by a Micro Flow Rector with a Temperature Gradient

NEXT
PREV
Features

We have developed a methodology for identifying general ignition and combustion characteristics of gaseous and liquid fuels including bio and synthetic fuels. It enables identification of ignition and combustion characteristics of new fuels prior to application for practical combustion devices. The reactor system consists of a small diameter channel which has a temperature gradient from room temperature to the auto ignition temperature and thus reaction characteristics in different temperature levels can be easily investigated. Such a measurement had required research level skills and special devices such as rapid compression machine or shock tube which is costly in general, however, the micro flow reactor with temperature gradient enables reaction analysis easily.

Targeted Application(s)/Industry

It is expected to contribute to the designing of combustion devices, developments of new fuels, and chemical promoter and inhibitor.

Institute of Fluid Science
MARUTA Kaoru, Professor Doctor of Engineering

[Image Recognition]

Visual Computing with Secure ICT in the Big Data Era

NEXT
PREV
Features

Our study focuses on sensing, processing, recognition, understanding, and analysis of enormous visual data collected in real-world environments. We have invented a set of advanced techniques of sub-pixel image analysis using phase-based image matching. Potential applications include personal recognition using various biometric traits (e.g., face, fingerprint, palm print, finger knuckle print, iris, and medical radiographs), machine vision, multi-view 3D reconstruction, image database search, and medical image computing. We are also studying fundamental techniques for building secure ICT infrastructure for the big data era; our research interests include tamper-resistant cryptographic processing and biometrics-based secure remote authentication.

Targeted Application(s)/Industry

We can provide collaboration and information exchange services for industries and other research organizations in the fields of image processing, computer vision, information security, biometrics, LSI design, and embedded system technologies. Many researchers and engineers from various companies, universities, and research institutions have visited our laboratory regardless of their technology fields. Our staff at the Intelligent Information System (IIS) Research Center will welcome potential collaborators: info@iisrc.ecei.tohoku.ac.jp

Graduate School of Information Sciences
AOKI Takafumi, Professor Doctor of Engineering

[Image sensor]

Development of Advanced Device and Process Technologies and New Image Sensors

NEXT
PREV
Features

Toward the ultimate performances of image sensors, advanced research activities are being conducted that cover a wide range of technology fields from cleanroom infrastructure, materials, process equipment, process, device, circuit, assembly, signal processing, measurement/evaluation and reliability. Following technologies have been successfully commercialized:
A fast and accurate measurement technology of electrical characteristics for over 1 million transistors
A wide dynamic range CMOS image sensor technology capturing images over five decade brightness ranges
An ultra-fast CMOS image sensor technology with 10 million frames/sec

Targeted Application(s)/Industry

Followings are available for industry collaborators:
A. 200mm-diameter-wafer silicon device fabrication utilizing the ultra-clean facility including wafer mutual fabrication processing between device manufacturers.
B. Process technology development and various kinds of analyses.
C. Development of new image sensors.

Management Science and Technology, Graduate School of Engineering
SUGAWA Shigetoshi, Professor PhD

[Imaging]

Development of Passive Millimeter-wave Imaging Device for Practical Applications

NEXT
PREV
Features

Millimeter wave (MM-wave) which is one of the electromagnetic wave transparent the clothes, the fire and the wall etc. and all natural materials including objects in clothes always radiate the electromagnetic wave as the thermal noise. Using these characteristics of MM-wave, imaging of concealed objects in clothes can be accomplished in a noninvasive and noncontact manner. This technique is called Passive Millimeter Wave (PMMW) Imaging technique and we have developed a PMMW imaging device for security applications.

The wave length of MM-wave frequency range is from 1 mm to 10 mm and the spatial resolution of images in MM-wave range is low compared with sub-millimeter (terahertz) range or Infra-Red range, however, higher transmittance through clothes can be obtained compared with higher frequency range. Furthermore, low noise amplifier (LNA) exists which could be the advantage of MM-wave compared with higher frequency ranges.

Now the device was developed for the purpose of keeping safe and secure aircrafts and ships etc., we hope to conduct collaborative research with a willing company for a practical application of this technology in industrial fields such as the fire rescue, the police equipment and the medical devices.

Graduate school of Engineering
SATO Hiroyasu, Assistant Professor Doctor of Engineering

X-Ray Phase Imaging for High-Sensitive Non-Destructive Testing

Features

Conventional X-ray imaging methods that rely on X-ray attenuation cannot generate clear contrast in the observation of low-density materials such as polymers consisting of low-Z elements. However, the sensitivity to the materials can be improved drastically by X-ray phase imaging that detects X-ray refraction caused by the materials. X-ray Talbot or Talbot-Lau interferometry consisting of X-ray transmission gratings is now constructed in laboratories for X-ray phase imaging. X-ray phase tomography is also realized, enabling high-sensitive three-dimensional observation.
X-ray phase imaging can be utilized for X-ray non-destructive testing of industrial products and baggage that cannot be checked conventionally.

Targeted Application(s)/Industry

We aim at appending a phase-contrast mode to micro-CT apparatuses and developing screening apparatuses in production lines.

Institute of Multidisciplinary Research for Advanced Materials
MOMOSE Atsushi, Professor Dr.

High-speed X-ray phase tomography with a millisecond-order temporal resolution

NEXT
PREV
Features

We successfully realized millisecond-order X-ray phase tomography using a fringe-scanning method in grating-based X-ray interferometry. We obtained phase tomograms with a measurement time of 4.43 ms using a white synchrotron X-ray beam. The use of a fringe-scanning method enables us to achieve not only a higher spatial resolution but also a higher signal-to-noise ratio than that attained by the Fourier transform method. In addition, our approach can be applied to realize four-dimensional or high-throughput X-ray tomography for samples that can be rotated at a high speed.

Targeted Application(s)/Industry

Institute of Multidisciplinary Research for Advanced Materials (IMRAM)
YASHIRO Wataru, Professor Doctor of Engineering

Imaging and photoregulation of biological functions

Features

To properly understand the functions of biomolecules, it is essential to observe them under physiological conditions where the interactions with other biomolecules are preserved. Therefore, we are developing new functional molecules using both organic chemistry and protein science approaches, and working on the visualization and optical control of biomolecules and their functions. Especially, we have developed fluorescent probes that quantitate the concentration of biomolecules or ions in subcellular regions such as organelles and caged compounds and photoswitches that optically manipulate the biomolecular functions.

Institute of Multidisciplinary Research for Advanced Materials
MIZUKAMI Shin, Professor Ph.D.

[Immunobiotics]

Development of Immunobiotic Evaluation System for Functional Feeds as a Livestock Animal Model

NEXT
PREV
Features

Pattern recognition receptor (PRR) family plays an important role in the defense through recognition of pathogen-associated molecular patterns or microorganisms-associated molecular patterns (PAMPs/MAMPs).
Some functional feed materials are thought to regulate intestinal immunity by contact and stimulation of epithelial cells and immunocompetent cells via PRRs in the gastrointestinal tract and induction of cytokine production. In this "new world" of feed immunology, however, much remains unknown about the underlying mechanisms of intestinal immunity because of lack of appropriate intestinal immunoassay system for livestock animals.
We have advanced application of originally established porcine and bovine intestinal epitheliocytes (PIE, BIE) cell lines (see photo) for evaluation of immunobiotics and immunogenics exerting anti-inflammatory responses both in PIE cell monolayer and co-culture system with porcine peyer's patch immune cells as a peyer's patch culture model (see illustration).

Targeted Application(s)/Industry

This evaluation system may also contribute to elucidate immunoregulatory mechanism of immunobiotics and immunogenics mediated by pattern recognition receptors essential to future development of not only immunobiotic feeds but also vaccines using immunobiotics to prevent specific diseases. This can benefit mankind by offering immunobiotic feeds as a safer alternative to conventional antibiotic drug therapy.

Graduate School of Agricultural Science
KITAZAWA Haruki, Professor Doctor of Agriculture

[Immunogenics]

Development of Immunobiotic Evaluation System for Functional Feeds as a Livestock Animal Model

NEXT
PREV
Features

Pattern recognition receptor (PRR) family plays an important role in the defense through recognition of pathogen-associated molecular patterns or microorganisms-associated molecular patterns (PAMPs/MAMPs).
Some functional feed materials are thought to regulate intestinal immunity by contact and stimulation of epithelial cells and immunocompetent cells via PRRs in the gastrointestinal tract and induction of cytokine production. In this "new world" of feed immunology, however, much remains unknown about the underlying mechanisms of intestinal immunity because of lack of appropriate intestinal immunoassay system for livestock animals.
We have advanced application of originally established porcine and bovine intestinal epitheliocytes (PIE, BIE) cell lines (see photo) for evaluation of immunobiotics and immunogenics exerting anti-inflammatory responses both in PIE cell monolayer and co-culture system with porcine peyer's patch immune cells as a peyer's patch culture model (see illustration).

Targeted Application(s)/Industry

This evaluation system may also contribute to elucidate immunoregulatory mechanism of immunobiotics and immunogenics mediated by pattern recognition receptors essential to future development of not only immunobiotic feeds but also vaccines using immunobiotics to prevent specific diseases. This can benefit mankind by offering immunobiotic feeds as a safer alternative to conventional antibiotic drug therapy.

Graduate School of Agricultural Science
KITAZAWA Haruki, Professor Doctor of Agriculture

[Immunohistochemistry]

Hormone Actions in Human Breast Carcinoma

NEXT
PREV
Features

Breast cancer is one of the most common malignancies in women worldwide. Therefore, it is very important to investigate biological features of breast carcinoma in order to improve clinical outcome of the patients. It is well known that estrogens play important roles in the development of human breast carcinomas, and endocrine therapies are frequently used in these patients to block the intratumoral estrogen actions. In the Division of Pathology and Histotechnology, we analyze hormone actions in breast carcinoma by pathological methods as well as various molecular biological techniques.

Targeted Application(s)/Industry

It will be possible to newly develop diagnostic techniques regarding prediction of prognosis and/or effectiveness of treatment in breast cancer patients.

Pathology and Histotechnology, Graduate School of Medicine
SUZUKI Takashi, Professor MD, PhD

[Immunosssay system]

Development of Immunobiotic Evaluation System for Functional Feeds as a Livestock Animal Model

NEXT
PREV
Features

Pattern recognition receptor (PRR) family plays an important role in the defense through recognition of pathogen-associated molecular patterns or microorganisms-associated molecular patterns (PAMPs/MAMPs).
Some functional feed materials are thought to regulate intestinal immunity by contact and stimulation of epithelial cells and immunocompetent cells via PRRs in the gastrointestinal tract and induction of cytokine production. In this "new world" of feed immunology, however, much remains unknown about the underlying mechanisms of intestinal immunity because of lack of appropriate intestinal immunoassay system for livestock animals.
We have advanced application of originally established porcine and bovine intestinal epitheliocytes (PIE, BIE) cell lines (see photo) for evaluation of immunobiotics and immunogenics exerting anti-inflammatory responses both in PIE cell monolayer and co-culture system with porcine peyer's patch immune cells as a peyer's patch culture model (see illustration).

Targeted Application(s)/Industry

This evaluation system may also contribute to elucidate immunoregulatory mechanism of immunobiotics and immunogenics mediated by pattern recognition receptors essential to future development of not only immunobiotic feeds but also vaccines using immunobiotics to prevent specific diseases. This can benefit mankind by offering immunobiotic feeds as a safer alternative to conventional antibiotic drug therapy.

Graduate School of Agricultural Science
KITAZAWA Haruki, Professor Doctor of Agriculture

[Implant Device for Human Body]

Development of an Industrial Instrument / the Medical Equipment Using the Contactless Power Transmission System

NEXT
PREV
Features

Using a non-contact power transmission technique, we develop an industrial instrument and the medical equipment. In the industrial instrument, we deal with the wide non-contact electricity transmission of the dozens of kW class from mW class from a small size electric apparatus represented by a cell-phone to the factory carrier device. In addition, we develop the contactless electricity transmission to an artificial heart (TETS) and a functional electrical stimulator (FES) aiming at the exercise of limbs inconvenience person function rebuilding mainly in the medical equipment.

Targeted Application(s)/Industry

We develop soft-heating hyperthermia using the small implantation element which does not need an internal temperature measurement as cancer treatment.

Graduate School of Biomedical Engineering
MATSUKI Hidetoshi, Professor Doctor of Engineering

 i

[image processing]

Visual Computing with Secure ICT in the Big Data Era

NEXT
PREV
Features

Our study focuses on sensing, processing, recognition, understanding, and analysis of enormous visual data collected in real-world environments. We have invented a set of advanced techniques of sub-pixel image analysis using phase-based image matching. Potential applications include personal recognition using various biometric traits (e.g., face, fingerprint, palm print, finger knuckle print, iris, and medical radiographs), machine vision, multi-view 3D reconstruction, image database search, and medical image computing. We are also studying fundamental techniques for building secure ICT infrastructure for the big data era; our research interests include tamper-resistant cryptographic processing and biometrics-based secure remote authentication.

Targeted Application(s)/Industry

We can provide collaboration and information exchange services for industries and other research organizations in the fields of image processing, computer vision, information security, biometrics, LSI design, and embedded system technologies. Many researchers and engineers from various companies, universities, and research institutions have visited our laboratory regardless of their technology fields. Our staff at the Intelligent Information System (IIS) Research Center will welcome potential collaborators: info@iisrc.ecei.tohoku.ac.jp

Graduate School of Information Sciences
AOKI Takafumi, Professor Doctor of Engineering

Digital Signal Processing

NEXT
PREV
Features

We are researching the following theme based on theoretical optimality and broad basis for digital signal processing.
(1) Image and video signal processing
(2) Image and video restoration
(3) Adaptive digital signal processing
(4) Optimal design of the digital filter
(5) Signal processing theory, linear system theory and circuit network theory
(6) Applications of digital signal processor

Targeted Application(s)/Industry

Our research can be applied to design and effective realization of optimal signal processing method for communication, measurement, control, and circuit design in various industry fields.

Dept. of Electronic Engineering, Graduate School of Engineering
KAWAMATA Masayuki, Professor Doctor of Engineering

Satellite Monitoring for China's Pollution and Asian Dust Including PM2.5

NEXT
PREV
Features

Kudoh Laboratory aims to construct an academic system of the Environmental Informatics and to make an unique study of earth environmental theme by using Information Technology. We have developed a three-dimensional histogram to analyze satellite images that consisted of a number of spectral data. And we extended to multi-dimensional method to obtain extraction reliable results of the aerosols such as air pollution and yellow sand. And also visualization for China's pollution and Asian dust including PM2.5 is now in progress.

Targeted Application(s)/Industry

In areas that are affected by the serious air pollution, it enables an accurate judgment of the situation and prediction by using a combination of this research. I hope to cooperate with related companies, organizations and other.

Center for Northeast Asian Studies
KUDOH Jun-ichi, Professor Doctor of Engineering

[impedance, instrument]

INSTRUMENT AND METHOD FOR ANALYZING METABOLIC CONDITION OF LIVING BODY AND RECORDING MEDIUM

NEXT
PREV
Features

AIMS: The invention is to analyze metabolic condition, especially in oxygen consumption and energy production in the adipose tissues of human (Patent: JP 3848818).
PROBLEM TO BE SOLVED: To provide an instrument and method for analyzing the metabolism condition of a living body which is constructed in such a manner that it can measure the metabolism condition of a living body correctly and easily, and a recording medium.
SOLUTION: A metabolism condition analyzer is provided with an input means for inputting information about the body of a subject, a control means for processing this information and an output means for outputting results of the processing. The information consists of name, age, sex, race, height, weight, bioelectric resistance value and the date and time of measurement. A data file consisting the control means stores evaluation data of a metabolic condition which is previously determined by medical judgment based on a combination of an internal respiration index and oxygen consumption and energy production in adipose tissues. These are computed by calculating the value obtained by subtracting one from a body density calculated from the height, weight of the subject and the bioelectric resistance value and then multiplying the value. Welcome to your investment or co-operation.

Department of Diabetes Technology, Graduate School of Biomedical Engineering
NONOGAKI Katsunori, Professor MD, PhD

[improvement of crop seed production]

Improvement of Seed Production by Using Reproductive Trait in Crops, Especially, Rice and Cruciferous Crops

NEXT
PREV
Features

Crops are important for food, environment recovery, energy production, and amenity activity for human being. For improvement of crop seed production, the breeding of crops having environmental stress, is important. Especially the developmental stage from pollination to fertilization is quite weak for these environmental stresses. Thus, by breeding of reproductive trait, we will establish the high productivity and quality of crop seeds. From our research, we found several stress-tolerant genes. We already started the research by both basic and applied level.

Targeted Application(s)/Industry

For application, we evaluated by taking prize for application in 2001. And our basic data has been published in international Journal, "Nature" and "Science". If anyone is interested in these genes, we hope to conduct to collaborative research for establishing the useful breeding lines.

Graduate School of Life Sciences
WATANABE Masao, Professor PhD.