"T" Keywords - 46 Result(s)

 T

[Tsunami]

[Tsunami Engineering]

[tumor-specific]

Production of Tumor-Specific Monoclonal Antibodies

NEXT
PREV
特徴・独自性
  • Podoplanin (PDPN/Aggrus/T1α), a platelet aggregation-inducing mucin-like sialoglycoprotein, is highly expressed in many cancers and normal tissues. A neutralizing monoclonal antibody (mAb; NZ-1) can block the association between podoplanin and C-type lectin-like receptor-2 (CLEC-2) and inhibit podoplanin-induced cancer metastasis, but NZ-1 reacts with podoplanin-expressing normal cells such as lymphatic endothelial cells. Recently, we established a platform to produce cancer-specific mAbs (CasMabs). The newly established LpMab-2 mAb reacted with podoplanin-expressing cancer cells but not with normal cells, as shown by flow cytometry and immunohistochemistry; therefore, LpMab-2 is an anti-podoplanin CasMab that is expected to be useful for molecular targeting therapy against podoplanin-expressing cancers.
実用化イメージ

We can produce cancer-specific mAbs (CasMabs) against all membranous proteins. CasMabs are expected to be useful for molecular targeting therapy without side effects.

Researchers

Graduate School of Medicine

Yukinari Kato

[tunnel magnetoresistance]

Development of High Sensitive Magnetic Sensor Operating at Room Temperature with Tunnel Magnetoresistance Devices

NEXT
PREV
特徴・独自性
  • Recently, many tunnel magnetoresistance devices with high magnetoresistance effect are reported. These are expected to be applied to high sensitive magnetic sensors. There are many magnetic sensors with variety of the mechanism, in order to meet the demand of the very wide range of sensing magnetic field. However, there is no magnetic sensor which has high sensitivity, easy to use, operation at room temperature and low cost. Only a magnetic sensor with tunnel magnetoresistance devices can satisfy all the demand in principle. As the device has very wide range of the sensing magnetic field, it can be designed for any demand to the sensors.
実用化イメージ

For example, this device can sense a bio-magnetic field easily at room temperature, so that it could be replaced SQUID device, which is popular now but is very expensive and not easy to use personally. Therefore, by using this device, we expect we can conduct effective collaborative research in medical field.

Researchers

Graduate School of Engineering

Yasuo Ando

[Two-dimensional system]

Transport Control of Semiconductor Quantum Structures and Highly Sensitive NMR

NEXT
PREV
特徴・独自性
  • Highly-sensitive NMR technique has been developed by manipulation polarization of nuclear spins via control of transport characteristics in GaAs and InSb quantum structures. This highly-sensitive NMR can be applied to two-dimensional and nanostructures. Furthermore, ideal gate controllability has been demonstrated in InSb quantum structures with Al2 O3 dielectrics. More importantly, the concept of generalized coherence time was introduced, where noise characteristics felt by nuclear spins can be measured including their frequency dependence. This concept will bring about a change in all nuclear-spin related measurements.
実用化イメージ

Next generation InSb devices based on good gate controllability. Various nuclear-spin based measurements and NMR utilizing the concept of generalized coherence time. Highly-sensitive NMR is now important for fundamental physics studies. In the future, it will contribute to quantum information processing.

Researchers

Center for Science and Innovation in Spintronics

Yoshiro Hirayama

[tyhoon]

Prediction and evaluation of future thermal and wind environments based on CFD, and planning of urban environments adaptable to future climate

NEXT
PREV
特徴・独自性
  • Numerical simulations of the physical environment of urban outdoor spaces are conducted to predict the physical environment, such as temperature, humidity, wind, and pollutant concentration, and field measurements are conducted to understand the actual physical environment. In addition, the future outdoor environments and heat stroke risks due to global warming are predicted and evaluated.
    Furthermore, the impacts of urban morphology (building shape and layout, street trees, etc.) on the adaptation to severe heat in summer and rare typhoons and floods are evaluated quantitatively.
実用化イメージ

Numerical analysis is used to quantitatively evaluate the "merits and demerits" of designing buildings, planning city blocks and urban areas, and introducing various heat control technologies on the wider thermal environment and the formation of wind ventilation paths, as well as the adverse effects of typhoons and other disasters. The materials for making decisions on whether or not to introduce these technologies are provided.

Researchers

Graduate School of Engineering

Yasuyuki Ishida