Sorted by Keyword - 1999 word(s), 222 profile(s)

 H

[High-impact polystyrene]

Chemical Recycling of Problematic Polymeric Wastes

NEXT
PREV
特徴・独自性
  • The Yoshioka Laboratory works on the recycling of various polymers by thermal and wet processes. Plastics such as poly(ethylene terephthalate) (PET), polyvinyl chloride (PVC), and high impact polystyrene (HIPS) cause serious problems during their recycling for the recycling process and the environment. However, these materials can also be seen as a resource for new materials. The decarboxylation of PET results in high yields of benzene that can be used as a chemical feedstock. Another important feature is the dehalogenation of flame retarded plastics and PVC. Dechlorinated plastic waste can be an important source for hydrocarbons, which can be used as fuels and chemical feedstock. The chemical modification of PVC offers the possibility of new materials with new properties. Modified PVC can be used as antibacterial material or as a material with ion exchange properties. The removal of brominated flame retardants from HIPS leads to higher recovery rates of styrene during thermal processing. When a wet process is used, the resulting flame retardant free HIPS can be reused.
実用化イメージ

We are eager to help companies to overcome their problems during recycling and recovery, and provide solutions for the treatment of waste materials.

Researchers

Graduate School of Environmental Studies

Toshiaki Yoshioka

[High-pressure combustion]

Combustion and Atomization Technology in High-Pressure Gas Turbine Conditions

NEXT
PREV
特徴・独自性
  • Combustion is a complex phenomenon composed of multi-dimensional dynamics of temperature, concentration, velocity, and chemical reactions. Advanced combustion technologies are essential for solving the environmental and energy issues. Our laboratory has a high-pressure combustion test facility which is a unique experimental facility in the world. Research projects have originality, especially in the field of high-pressure combustion and laser diagnostics, and focus on not only aerospace engineering and energy engineering including new fuel technology but also atomization technology and safety operations of chemical plants mostly operated at high pressure.
実用化イメージ

Potential collaborations are in the research fields of aerospace propulsions, automobile engines, power generations and chemical plants, in terms of development of gas turbine combustors for various fuels, generation and control of fuel atomizers, laser diagnostics of combustion and safety design of chemical reactors.

Researchers

Institute of Fluid Science

Hideaki Kobayashi

[High-speed combustion]

Combustion and Atomization Technology in High-Pressure Gas Turbine Conditions

NEXT
PREV
特徴・独自性
  • Combustion is a complex phenomenon composed of multi-dimensional dynamics of temperature, concentration, velocity, and chemical reactions. Advanced combustion technologies are essential for solving the environmental and energy issues. Our laboratory has a high-pressure combustion test facility which is a unique experimental facility in the world. Research projects have originality, especially in the field of high-pressure combustion and laser diagnostics, and focus on not only aerospace engineering and energy engineering including new fuel technology but also atomization technology and safety operations of chemical plants mostly operated at high pressure.
実用化イメージ

Potential collaborations are in the research fields of aerospace propulsions, automobile engines, power generations and chemical plants, in terms of development of gas turbine combustors for various fuels, generation and control of fuel atomizers, laser diagnostics of combustion and safety design of chemical reactors.

Researchers

Institute of Fluid Science

Hideaki Kobayashi

[High-Speed Projector]

High-Speed Vision for Real-Time Motion Analysis

NEXT
PREV
特徴・独自性
  • We are investigating high-speed vision systems that enable real-time image acquisition and visual processing at frame rates substantially higher than the standard video rate.
実用化イメージ

High-speed vision systems are useful for fast measurement and control of dynamic systems in general. When combined with external facilities such as high-speed projectors or acceleration sensors, they enable further wider applications including fast 3D measurement or object identification.

Researchers

Unprecedented-scale Data Analytics Center

Shingo Kagami

[High-Speed Vision]

High-Speed Vision for Real-Time Motion Analysis

NEXT
PREV
特徴・独自性
  • We are investigating high-speed vision systems that enable real-time image acquisition and visual processing at frame rates substantially higher than the standard video rate.
実用化イメージ

High-speed vision systems are useful for fast measurement and control of dynamic systems in general. When combined with external facilities such as high-speed projectors or acceleration sensors, they enable further wider applications including fast 3D measurement or object identification.

Researchers

Unprecedented-scale Data Analytics Center

Shingo Kagami

[high-temperature injury]

Methods to Restore Strelity of Gramineous Plants under High- and Low-Temperature Stress Conditions

NEXT
PREV
特徴・独自性
  • Plant reproductive development is more sensitive than vegetative growth to many environmental stresses. High-temperature injury is becoming an increasingly serious problem due to recent global warming. In wheat, barley, and other crops, the early phase of anther development is most susceptible to high temperature. Oppositely, grain yields in rice plants are often reduced by exposure to low temperature. Unexpected climate change, such as abnormally hot or cool summer temperatures, have occurred repeatedly during recent years. This method indicates that an appropriate use of specific phytohormones, such as auxin and GA, may promote stress tolerance and adaptation to abiotic stresses.
実用化イメージ

These potentially novel functions of the classical phytohormones will be important sustainable agriculture in the face of global climate change.

Researchers

Graduate School of Life Sciences

Atsushi Higashitani

[High-Water Content Sludge]

Development of Recycling Technology for High-Water Content Sludge by Using Fiber Materials

NEXT
PREV
特徴・独自性
  • The recycling rate of construction muds and sludge is very low because the water content of these muds is very high and direct reuse of them is very difficult. Therefore, a new recycling technology for high-water content sludge has been developed in this laboratory. This technology is called "Fiber-Cement-Stabilized Soil Method", and it uses fiber materials and cement. The main feature of this method is to mix the fiber materials with the sludge, and the fiber materials included in the soil produce several geotechnical merits.
実用化イメージ

The modified soils produced by this method can be used as ground materials for reinforced embankment of the river bank and soil structures because they have several features such as high failure strength, high failure strain high durability for drying and wetting and high dynamic strength.

Researchers

Graduate School of Environmental Studies

Hiroshi Takahashi

[Histone modifications]

Testing sperm samples from fathers can predict the incidence of autism spectrum disorder in their children

NEXT
PREV
概要

Autism spectrum markers:
Measuring histone modifications in sperm may be able to predict the risk of neurodevelopmental disorders in the next generation.

従来技術との比較

It is known that the highest risks with regard to the development of developmental disorders in children are ageing and premature birth in both parents, and it has been repeatedly epidemiologically reported that the risk is higher in ageing fathers than in ageing mothers among the parents. Conventionally, sperm are only examined under a microscope to check sperm count, morphology and motility, but not at the molecular level. The present invention is an innovative method that focuses on epigenetic molecular markers.

特徴・独自性
  • While birthrates are falling rapidly, developmental disorders are on the rise
  • Focus on plastic epigenetic molecules as a successional effect of paternal ageing.
  • Sperm testing can be performed non-invasively.
  • Suitable as a quality check for sperm donors etc.
実用化イメージ

The combination of sperm histone modifications and relevant epigenetic factors (DNA methylation, microRNAs) in combination with the sperm panel test will enable highly accurate sperm quality testing.

Researchers

Graduate School of Medicine

Noriko Osumi

[HIV]

Development of the next generation anti-HIV agents

NEXT
PREV
特徴・独自性
  • HIV infection is one of most serious concern in infectious diseases. We will perform anti-HIV assays for unmet medical needs in control of HIV infections with established novel assays. We have developed reverse transcriptase inhibitor that has novel mechanism of inhibition, translocation-inhibition (J Biol Chem, 2009). Dr Kodama participated in the primary screening and development of a new HIV integrase inhibitor, elvitegravir (J Virol 2009), and a unique reverse transcriptase inhibitor, islatravir, which phase III clinical trials by the Merck & Co., Inc. will complete, soon. We have a representative resistant HIV strain-library for anti-HIV screening and several target oriented high through-put screening systems.
実用化イメージ

We can establish high through-put screening for new targets, so please consult with us individually. We are open to joint development requiring BSL3/P3 experimental facilities and academic guidance including other microorganisms.

Researchers

International Research Institute of Disaster Science

Eiichi Kodama

[Hormone]

Hormone Actions in Human Breast Carcinoma

NEXT
PREV
特徴・独自性
  • Breast cancer is one of the most common malignancies in women worldwide. Therefore, it is very important to investigate biological features of breast carcinoma in order to improve clinical outcome of the patients. It is well known that estrogens play important roles in the development of human breast carcinomas, and endocrine therapies are frequently used in these patients to block the intratumoral estrogen actions. In the Division of Pathology and Histotechnology, we analyze hormone actions in breast carcinoma by pathological methods as well as various molecular biological techniques.
実用化イメージ

It will be possible to newly develop diagnostic techniques regarding prediction of prognosis and/or effectiveness of treatment in breast cancer patients.

Researchers

Graduate School of Medicine

Takashi Suzuki

[hot-compressed water]

Converting Food Waste into Valuable Materials with Hot-Compressed Water Treatment

NEXT
PREV
特徴・独自性
  • Treatment with hot-compressed or subcritical water is an attractive process for converting food waste into valuable materials. Water is an environmentally acceptable solvent and is cost effective; thus, hot-compressed water has recently received attention as a medium for resource recovery from waste. We chose fish gelatin as a model of marine food waste (especially fish skin fraction), and we determined the optimum conditions for the degradation of fish gelatin with hot-compressed water between 160 and 240 °C at 2 MPa. These conditions were optimized in terms of maximizing the concentrations of specific degradation products, such as peptides, and ACE inhibitory.
実用化イメージ

The disposal of fish waste has become a serious problem in marine food industries because approximately half of the fish mass, including the skin, bones, entrails, and some meat. The feasibility of converting organic waste by hot-compressed water (subcritical water treatment) into useful resources has been demonstrated together with Industry.

Researchers

Graduate School of Agricultural Science

Tomoyuki Fujii

[Human Interface]

Robot Technology for Achieving Secure Society

NEXT
PREV
特徴・独自性
  • Tadokoro Laboratory developed ‘Active Scope Camera,' a world-unique rescue robot that can search deep in rubble piles of collapsed structures through a gap of a few cm wide. It also developed ‘Quince,' a world-unique unmanned ground vehicle that could survey the second to fifth floors of Nuclear Reactor Buildings of Fukushima-Daiichi Nuclear Power Plant. Its technologies was applied industries, including unmanned transfer vehicle for outdoors under ice and snow environment being actually used in a factory of Toyota Motor East Japan, and ‘Robo-Scope' for debris inspection in collaboration with Shimizu Corporation.
実用化イメージ

We have a policy of education through and research for solution to actual problems. Current nearly ten collaborative researches focuses on outdoor investigation, infrastructure/plant inspection, and remote/autonomous task execution by robots.

Researchers

Graduate School of Information Sciences

Satoshi Tadokoro

Interactive Content to Enrich Our Lives

NEXT
PREV
特徴・独自性
  • (1) Displays and Interactive Techniques
  • Designing original display systems to show visual information accurately and effectively, and interaction techniques to make better use of these display systems.
  • (2) Interactive Video Content
  • Creating new interactive content from real video taken by cameras and computer-generated animations.
  • (3) Modeling and Controlling the “Atmosphere” in a Conversation Space
  • Aiming to stimulate the “atmosphere” in a conversation space by supplying real-time feedback to the users, we are exploring means of sensing and analyzing change in the space.
  • (4) Designing and Evaluating Novel Interaction Techniques
  • Designing and evaluating novel interaction techniques on target selection for variety types of displays including large and touch displays.
実用化イメージ

Researchers

Research Institute of Electrical Communication

Yoshifumi Kitamura

[Human Resource Development]

Nonprofit Organizations and Social Capital

NEXT
PREV
特徴・独自性
  • Nonprofit organizations strive to solve community and social problems and to create new social values. Nonprofit organizations have the role to create citizenship and social capital - trust, norms and networks - in community. Social capital, an invisible and soft capital has increasingly become important to a sustainable management of an organization.
  • We hope to conduct collaborative research with willing corporations and organizations for measuring social capital at community/organizational levels and for making practical proposals on how to create and utilize social capital with viewpoints of partnership with nonprofit organizations and human resource development.
実用化イメージ

Researchers

Graduate School of Economics and Management

Yuko Nishide

[Human rights education]

Multicultural collaboration and Human Rights Education

NEXT
PREV
特徴・独自性
  • In this research, students from various backgrounds study human rights together to see whether human rights could be the universal topic for students to start and developing their discussions. Thus, this research is trying to observe students' behavior and check their study outcome.
実用化イメージ

It would be great if I could collaborate with any researchers or associations to do comparative research under the topics of human rights or creating collaborative relationships among students from various backgrounds.

Researchers

Institute for Excellence in Higher Education

Mino Takamatsu

[Hybrid nanomaterials]

Supercritical Hydrothermal Synthesis of Organic-Inorganic Hybrid Nanoparticles

NEXT
PREV
特徴・独自性
  • We invented supercritical hydrothermal synthesis method for the synthesis of organic modified nanoparticles (NPs). Under the supercritical state, the organic molecules and metal salt aqueous solutions are miscible and water molecule works as an acid/base catalyst for the reactions. Organic-inorganic conjugate NPs can be synthesized under this condition. This hybrid NPs show high affinity with the organic solvent or the polymer matrix, which leads to fabricate the organic inorganic hybrid nanomaterials with the trade-off function (super hybird nanomaterials). These hybrid materials of polymer and ceramics fabricated with NPs achieve both high thermal conductivity and easy thin film flexible fabrication, namely trade-off function.
実用化イメージ

For example, by the surface modification of BN particles by supercritical method, affinity of BN and polymers could be improved, so that high BN content of hybrid materials, thus high thermal conductivity materials, could be synthesized. Also by dispersing high refractive index NPs like TiO2 or ZrO2 into polymers transparently, we can tune the refractive index of the polymers. CeO2 nanoparticles are expected to be used for high performance catalysts. To transfer those supercritical fluid nano technologies, a consortium was launched with more than 70 companies.

Researchers

Advanced Institute for Materials Research

Tadafumi Ajiri

[Hybrid Polymer]

Polymer-nanoparticle hybrid materials

NEXT
PREV
特徴・独自性
  • Hybrid materials that show multi-functions of polymer and nanoparticles are expected to be used in future industries, and thus many research and development have been actively conducted. However, since the affinity of polymer and inorganic nanoparticles is very low, in most of the cases, properties of different materials are incompatible in the hybrid materials. To create the hybrid materials with incompatible multi-functions has been considered a difficult task.
  • However, by using supercritical fluid technology, we have succeeded in making hybrid materials with incompatible multi-functions.
実用化イメージ

Now, variety of hybrid materials are being developed, including
・Transparent, flexible, high reflective index, and high fabricability,
・Flexible, high heat conductivity, low electric resistivity, and high fabricability.

Researchers

Advanced Institute for Materials Research

Tadafumi Ajiri

[Hydraulic fracturing]

Development of the method of Baby Borehole Hydraulic Fracturing, BABHY

特徴・独自性
  • For the effective measurement of the reopening pressure in hydraulic fracturing, it is necessary to use the testing equipment with sufficiently small compliance. This limitation makes it difficult to apply the hydraulic fracturing for the measurement of the maximum stress, because the compliance of conventional equipments is generally so large. Taking account of this situation, we proposed a new concept which allows us to do the in-situ tests of hydraulic fracturing for stress measurement at so deep depths as more than 1 km. We call the concept the Baby Borehole Hydrofracturing, BABHY for short. In order to put the new concept into practice, we developed the BABHY sonde and finally we succeeded to carry out hydraulic fracturing test by using the tools in a vertical borehole of 811 m depth. We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.
実用化イメージ

Researchers

Institute of Fluid Science

Takatoshi Ito

[hydride]

“HYDRIDE" Researches for Energy Applications

NEXT
PREV
特徴・独自性
  • This group is engaged in basic and applied researches of "hydrides" for practical use in hydrogen energy system. The main subject is the exploration of advanced hydrogen storage materials which support hydrogen energy technologies such as fuel cells. Currently, we synthesize a wide variety of novel hydrides composed of lightweight metals with specific nano-structures using advanced techniques for crystal and electronic structure analyses. In addition to the hydrogen storage, we develop the wide research fields related to hydrides, such as fast lithium ionic conductors.
実用化イメージ

Besides the contributions in industrial progress through the material development for future hydrogen energy system and next-generation secondary battery, we positively provide technical assistance to organizations and companies concerned about our findings.

Researchers

Advanced Institute for Materials Research

Shin-Ichi Orimo

[Hydrogel]

Bio-Hybrid MEMS for Medical, Environmental and Food Engineering

NEXT
PREV
特徴・独自性
  • We have developed original manufacturing techniques for bio-hybrid MEMSs that utilize special functions of bio-elements, proteins and living cells, for molecular selective sensing and power generation from natural fuels.
  • (1) Conducting polymer electrodes printed on hydrogels (image 1)
  • (2) Dynamic control of bio-adhesion by electrochemical means (image 2)
  • (3) Micro Biofuel Cells with flexible enzyme electrode patches (image 3)
実用化イメージ

We hope to conduct collaborative research with a willing company for a practical application of these technologies in industry.

Researchers

Graduate School of Engineering

Matsuhiko Nishizawa