Tohoku University. Research Profiles

LANGUAGE

"F" Keywords - 51 Result(s)

F

 F

[F1 hybrid]

Molecular studies on new resources for hybrid rice breeding

NEXT
PREV
Features

F1 hybrid breeding is one of the most advanced techniques for production of cultivars with higher yield and desirable traits of both parents. Most of hybrid rice utilize cytoplasmic male sterility (CMS) and fertility restoration system. We develop a Tohoku University-original CW-type CMS and fertility restorer line and study their molecular mechanism. The CW-type cytoplasm enables indica rice cultivars to be CMS, which could not be achieved by other known cytoplasm.

Targeted Application(s)/Industry

Hybrid rice has an average 30% yield advantage over inbred lines, and is cultivated on 13% of the world rice fields. Our study provides a new and original resource for hybrid rice breeding for globalization of rice industry.

Graduate School of Agricultural Science
TORIYAMA Kinya, Professor Doctor of Agriculture

[Failure analysis]

[Fatigue Strength]

Cavitation Peening

NEXT
PREV
Features

Surface modification method to improve fatigue strength has been developed using cavitation impacts, which are normally causes severe damage in hydraulic machineries. The method was called "cavitation peening". In order to make clear the mechanism, a load controlled plate bending fatigue test machine was developed. It was proved by using the test machine that the threshold level of stress intensity factor was improved about 1.9 times by cavitation peening. The mitigation of hydrogen embrittlement by cavitation peening was also improved.

Targeted Application(s)/Industry

The cavitation peening can apply to component of automobile and forging die. We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.

Graduate School of Engineering
SOYAMA Hitoshi, Professor Doctor of Engineering

[Fatty acid methyl and ethyl esters]

A Novel Process for Continuous Production of High Quality Biodiesel with Ion-Exchange Resin Catalysts

NEXT
PREV
Features

We successfully developed a continuous production process for high-quality biodiesel. This production technology is very simple, just passing through the reactors packed with ion-exchange resins without complicated upstream and downstream processes, which provide additional production cost and environmental stress and the entire process is fully automatic. With this technology, you can easily produce high-quality biodiesel from various cheaper oils with fatty acid content up to 100%.

Targeted Application(s)/Industry

This innovative technology succeeds in solving the serious problems in the current biodiesel production, restriction by shortage of feedstock supply and the unstable quality of biodiesel due to the soap formation. This technology also applies to the production of fatty acid methyl ester, a starting material for surfactant production, which is an important intermediate step in oleochemistry.

Graduate School of Engineering
SHIBASAKI-KITAKAWA Naomi, Professor Doctor of Engineering

[Feasibility Assessment]

A Study on the Proper Waste Management and Urban Mining Project in Asian Countries; International Resources Recycling and Cross-Border Pollution

NEXT
PREV
Features

The objective of this research is to maximize international resource recycling efficiency through a feasibility assessment of urban mining project in East Asia. It is not only focused on valuable materials but also on less valuable materials like waste plastics. The merit of this approach is its consideration of social, economic and environmental systems in each country.

Targeted Application(s)/Industry

This research is envisioned to support the establishment of resource recycling systems, developing new business models, people-to-people exchange and information sharing.

Graduate School of International Cultural Studies
YU Jeongsoo, Professor PhD(Urban and Regional Planning)

[Feedback recycling]

Chemical Recycling of Problematic Polymeric Wastes

NEXT
PREV
Features

The Yoshioka Laboratory works on the recycling of various polymers by thermal and wet processes. Plastics such as poly(ethylene terephthalate) (PET), polyvinyl chloride (PVC), and high impact polystyrene (HIPS) cause serious problems during their recycling for the recycling process and the environment. However, these materials can also be seen as a resource for new materials. The decarboxylation of PET results in high yields of benzene that can be used as a chemical feedstock. Another important feature is the dehalogenation of flame retarded plastics and PVC. Dechlorinated plastic waste can be an important source for hydrocarbons, which can be used as fuels and chemical feedstock. The chemical modification of PVC offers the possibility of new materials with new properties. Modified PVC can be used as antibacterial material or as a material with ion exchange properties. The removal of brominated flame retardants from HIPS leads to higher recovery rates of styrene during thermal processing. When a wet process is used, the resulting flame retardant free HIPS can be reused.

Targeted Application(s)/Industry

We are eager to help companies to overcome their problems during recycling and recovery, and provide solutions for the treatment of waste materials.

Graduate School of Environmental Studies
YOSHIOKA Toshiaki, Professor Graduate School of Engineering

[Ferromagnetism]

Oxide Electronics

Features

Our research group investigates creation of functional oxides and their functionalities. We synthesize thin films by pulsed laser deposition and sputtering methods and bulk specimens, and develop their novel synthetic routes. Recently, we are studying electrically conducting rare earth oxides, transparent room temperature ferromagnetic semiconductors, and layered superconductors with monatomic Bi layer. We will develop our materials design by extending materials range and performing oxide heteroepitaxy.

Targeted Application(s)/Industry

Collaborative research in fields of oxide electronics with novel electric conducting oxides and oxide spintronics with ferromagnetic semiconductors and novel ferromagnetic oxides.

Advanced Institute for Materials Research
FUKUMURA Tomoteru, Professor Doctor of Engineering

[Fiber-Cement-Stabilized Soil]

Development of Recycling Technology for High-Water Content Sludge by Using Fiber Materials

NEXT
PREV
Features

The recycling rate of construction muds and sludge is very low because the water content of these muds is very high and direct reuse of them is very difficult. Therefore, a new recycling technology for high-water content sludge has been developed in this laboratory. This technology is called "Fiber-Cement-Stabilized Soil Method", and it uses fiber materials and cement. The main feature of this method is to mix the fiber materials with the sludge, and the fiber materials included in the soil produce several geotechnical merits.

Targeted Application(s)/Industry

The modified soils produced by this method can be used as ground materials for reinforced embankment of the river bank and soil structures because they have several features such as high failure strength, high failure strain high durability for drying and wetting and high dynamic strength.

Graduate School of Environmental Studies
TAKAHASHI Hiroshi, Professor Doctor of Engineering

[Fine grain material]

Development of high performance and high functional materials by Compression Shearing MEthod (COSME)

NEXT
PREV
Features

The compression shearing process is a new technology that enables consolidating of powder materials at temperatures ranging from room temperature to about 300 ° C. This method can consolidate powder to bulk material at temperatures below the melting point without binders or additives that make materials difficult to recycle. It is an innovative technology that has the potential to be applied to materials that were difficult to consolidate using conventional powder metallurgy methods and a new concept material process. We are actively working on this research on both basics and applications and would like to apply this technology to material bonding and material coating in the future.

Targeted Application(s)/Industry

Institute of Fluid Science
MIKI Hiroyuki, Associate Professor Doctor of Science

[Fine particles]

Functional Uniform Nanoparticles Production and Their Industrial Use

NEXT
PREV
Features

Nanoparticles and/or fine particles to be used for functional materials, such as semiconductor, photocatalysts, dielectric and/or piezoelectric materials, cosmetics, catalysts, etc., has been synthesized in liquid-phase. Their size, shape, composition, and structure have been <strong>precisely controlled</strong> along an expected usage. <strong>Tailor-made synthesis method</strong> has been provided for nanoparticles and/or fine particles the companies wish to use.

Targeted Application(s)/Industry

Until now, we have been supplying nanoparticles and/or fine particles of ITO (Indium Tin Oxides) as TCO, Bi based or Nb based particles for lead-free piezoelectric ceramics, perovskite-based oxides for dielectric materials etc. The gel-sol method as the main synthesis method for uniform particles makes the production cost reduced.

Institute of Multidisciplinary Research for Advanced Materials
MURAMATSU Atsushi, Professor Doctor of Engineering

Creation of Organic-Inorganic Hybrid Materials and their Application

NEXT
PREV
Features

Organicl compounds, such as liquid-crsytals, polymers, etc., can be hybridized with inorganic materials in atomic level, in particuar, with nanoparticles. Both of high effeciency of processing ease for the former and high possibilities of physical properties for the latter can be attained through the complete solution of trade-off characteristics. For example, this atomic-level hybridization technique makes inorganic nanoparticles active for the response like a liquid crystal. By using this method, we expect we can conduct effective collaborative research in medical fields.

Institute of Multidisciplinary Research for Advanced Materials
MURAMATSU Atsushi, Professor Doctor of Engineering

[Finishing surface roughness]

Nano-Precision Mechanical Manufacturing for Extreme Optics

NEXT
PREV
Features

Through the fusion of technology and manufacturing techniques, the level of Japanese manufacturing has come to be regarded as exceptional. In order to survive in the current economic climate, research and development work in manufacturing processing technology must be promoted in order to develop ultra-high-precision mechanical manufacturing technologies capable of producing structures having three-dimensional shapes with ultra-smooth surfaces and extremely precise form accuracy, as well as ultra-high-precision lithography technologies that will enable the creation of nano structures by adding and subtracting atoms or molecules with precise control. In our laboratory, we focus on the creation and development of new manufacturing principles and technologies for nano-precision mechanical manufacturing.
1. Fluctuation-Free / nano-precision grinding for free-form genaration,
2. Ultra-precise cutting for complex shape elements.

・ Strong Collaboration among Industry, Academia and Government
We believe that greater importance will be attached to cooperation among academic institutions and between academia and government in research, with the results being put to practical use through joint projects between academia and industry. The fundamental mission of our research group is to encourage joint research in industry. In addition, we frequently provide consultation regarding technological problems in various companies.

Graduate School of Biomedical Engineering
KURIYAGAWA Tsunemoto, Professor PhD (Engineering)

 f

[fall]

Development of Fall-Prevention Footwear Based on Mechanical Analysis of Slip-Related Falls

NEXT
PREV
Features

The number of fatalities due to falling accidents indoor/outdoor has increased in Japan as well as in other advanced countries. The fatalities due to falling accidents in a year have exceeded those due to traffic accidents in Japan recently. Because more than 80% of the fatalities are elderly people, it is considered an urgent issue to prevent their falling. We have conducted researches on falling during walking due to induced slip, in the contact interface of shoe sole and floor, through tribological and biomechanical approaches. We clarified the required values of static friction coefficient (figure 1), between shoe sole and floor, and how to gait to prevent slipping through kinetic analysis of gait. We also succeeded in the development of a unique footwear outsole having the high-grip property (figure 2) and high slip-resistant concrete pavement blocks (figure 3) through the collaboration with regional companies. We have recently conducted research and development of footwear that is able to prevent falls due to balance loss after slipping.

Targeted Application(s)/Industry

Products for fall prevention in daily life or in work site. Evaluation of slip resistance of footwear and floor materials.

Graduate School of Engineering
YAMAGUCHI Takeshi, Associate Professor Doctor of Engineering

[fatigue]

The Novel Ultrasound Irradiation Device

NEXT
PREV
Features

Dr. Katsunori Nonogaki has developed the novel ultrasound irradiation device, which can improve the autonomic nervous system activity and peripheral circulation. In addition, the ultrasoud device can improve hypertension and hyperglycemia within 20 min in subjects with drug-resistant hypertension and diabetes. Our initial device was approved in Japan (226AIBZX00028000). This device will be avaliable for the treatment of 1) muscle pain, 2) the autonomic neural dysfunction and stress-related disorders, 3) hypertention, and 4) diabetes. Moreover, the device will be usefull for your healthy life and aging care.

Targeted Application(s)/Industry

Our aims are to export the device internationally. We seek the investment and international business partners.

Department of Diabetes Technology, Graduate School of Biomedical Engineering
NONOGAKI Katsunori, Professor MD, PhD

[femtosecond laser]

Nanoparticle synthesis by femtosecond laser pulses

NEXT
PREV
Features

By using femtosecond laser pulses, nanoparticles of noble metals (gold, platinum, silver, palladium etc.) are synthesized. Particles with the size of a few nanometers are fabricated by simply irradiating metal ion solution with the laser pulses. This process needs no reducing agent and is able to synthesize alloy nanoparticles of noble metals. The collection of nanoparticles is easy because the process is performed in liquid. We are prepared to provide academic consultations to companies interested in our research.

Targeted Application(s)/Industry

Institute of Multidisciplinary Research for Advanced Materials
SATO Shunichi, Professor Doctor of Engineering

[fertility]

Economics of Aging

Features

I investigate on the economics of aging, the optimal social welfare policy, low fertility and so on not based on the historical and systematic approach but based on the neo-classical economic theory. I also use econometric method and statistical approach. I often estimate the future projections of the population, public finance, magnitude of private markets, the results of public policies.
I also research on the comparative studies on East Asia (Japan, China, Korea, Taiwan) and European (especially Scandinavian countries). I provide statistic data and information on the economic and political systems on the aging in Japan.

Targeted Application(s)/Industry

The future estimation on the financial status , market caused by low fertility and aging. The effective management of the medical institutions, social welfare systems, gender equality societies for the central and local government, research institutions, public enterprises, and financial Institutions.

Graduate School of Economics and Managemant
YOSHIDA Hiroshi, Professor

[filter]

Development of Open Nanoporous Base and Half Metals, Metalloids and their Alloys

NEXT
PREV
Features

Nanoporous metals have drawn considerable attention due to their highly functional properties. They are generally produced by selective dissolution of elements from a multicomponent alloy (known as the dealloying method). As this method is based on differences in the electrode potential of each element present in the alloy, and this potential is high for noble metals, porous structure can be obtained only for noble metals. Recently we have found a new, simple and easy dealloying method without using aqueous solution, which enable us to develop an open nanoporous non-oxidized metallic material even with base metals (such as Ti, Ni, Cr, Fe, Mo, etc), metalloids and their alloys.

Targeted Application(s)/Industry

This technique is very powerful for developing new functional electrodes, catalysts, filters as well for removing toxic metallic element from the surface of biomaterials containing the toxic element.

Institute for Materials Research
KATO Hidemi, Professor PhD (Engineering)

[finite element method]

Performance enhancement and application development of energy harvesting materials by microstructure design

NEXT
PREV
Features

To realize IoT society, it is required the sensors, which function without battery charge. We study on energy harvesting materials using our knowledge about materials mechanics and numerical simulation such as finite element method. We recently address to develop energy harvesting devices, which can recovery the unharnessed energy around us as electrical energy.

Targeted Application(s)/Industry

Department of Materials Processing, Graduate School of Engineering
NARITA Fumio, Professor Doctor of Engineering

[first-principles calculation]

Theoretical Design of New Materials and Device Functionality based on First-principles Calculations

NEXT
PREV
Features

We are doing theoretical research on electrical conductivity in magnetoresistive devices using highly spin-polarized materials. The aim is to achieve very functional spintronics devices such as read-out heads for ultrahigh-density magnetic recording and non-volatile spin memories. We also investigate magnetoresistive devices using perpendicularly magnetized materials to ensure endurance against thermal fluctuations of the magnetization. We successfully achieve a guideline for improvement of the magnetoresistive performance by designing the crystal structure at the interface between ferromagnets and oxides theoretically.
We believe that first-principles calculations, which need no empirical parameter, play a very important role in research and development of various materials. Please contact us if you want to collaborate with us.

Research Institute of Electrical Communication
SHIRAI Masafumi, Professor Doctor of Engineering

[first-principles theory]

Development of new materials based on the calculation of thermodynamic properties through electronic theory

Features

We are conducting studies on computing the free energies of materials; the structures and physical properties of grain boundaries and stacking faults; and the thermodynamic properties of the liquid and glassy phases by coupling first-principles calculations and cluster variation methods, as well as quantum molecular dynamics.

Targeted Application(s)/Industry

Furthermore, the world’s highest-purity materials are produced through a combination of chemical and physical refining methods to confirm the calculated thermodynamic properties with high accuracy and to develop new materials such as magnetic materials, semiconductors, and lightweight materials based on Mg and Al alloys.

Institute of Multidisciplinary Research for Advanced Materials
OHTANI Hiroshi, Professor Doctor of Engineering