"H" Keywords - 72 Result(s)

 H

[hot-compressed water]

Converting Food Waste into Valuable Materials with Hot-Compressed Water Treatment

NEXT
PREV
特徴・独自性
  • Treatment with hot-compressed or subcritical water is an attractive process for converting food waste into valuable materials. Water is an environmentally acceptable solvent and is cost effective; thus, hot-compressed water has recently received attention as a medium for resource recovery from waste. We chose fish gelatin as a model of marine food waste (especially fish skin fraction), and we determined the optimum conditions for the degradation of fish gelatin with hot-compressed water between 160 and 240 °C at 2 MPa. These conditions were optimized in terms of maximizing the concentrations of specific degradation products, such as peptides, and ACE inhibitory.
実用化イメージ

The disposal of fish waste has become a serious problem in marine food industries because approximately half of the fish mass, including the skin, bones, entrails, and some meat. The feasibility of converting organic waste by hot-compressed water (subcritical water treatment) into useful resources has been demonstrated together with Industry.

Researchers

Graduate School of Agricultural Science

Tomoyuki Fujii

[Human Interface]

Robot Technology for Achieving Secure Society

NEXT
PREV
特徴・独自性
  • Tadokoro Laboratory developed ‘Active Scope Camera,' a world-unique rescue robot that can search deep in rubble piles of collapsed structures through a gap of a few cm wide. It also developed ‘Quince,' a world-unique unmanned ground vehicle that could survey the second to fifth floors of Nuclear Reactor Buildings of Fukushima-Daiichi Nuclear Power Plant. Its technologies was applied industries, including unmanned transfer vehicle for outdoors under ice and snow environment being actually used in a factory of Toyota Motor East Japan, and ‘Robo-Scope' for debris inspection in collaboration with Shimizu Corporation.
実用化イメージ

We have a policy of education through and research for solution to actual problems. Current nearly ten collaborative researches focuses on outdoor investigation, infrastructure/plant inspection, and remote/autonomous task execution by robots.

Researchers

Graduate School of Information Sciences

Satoshi Tadokoro

Interactive Content to Enrich Our Lives

NEXT
PREV
特徴・独自性
  • (1) Displays and Interactive Techniques
  • Designing original display systems to show visual information accurately and effectively, and interaction techniques to make better use of these display systems.
  • (2) Interactive Video Content
  • Creating new interactive content from real video taken by cameras and computer-generated animations.
  • (3) Modeling and Controlling the “Atmosphere” in a Conversation Space
  • Aiming to stimulate the “atmosphere” in a conversation space by supplying real-time feedback to the users, we are exploring means of sensing and analyzing change in the space.
  • (4) Designing and Evaluating Novel Interaction Techniques
  • Designing and evaluating novel interaction techniques on target selection for variety types of displays including large and touch displays.
実用化イメージ

Researchers

Research Institute of Electrical Communication

Yoshifumi Kitamura

[Human Resource Development]

Nonprofit Organizations and Social Capital

NEXT
PREV
特徴・独自性
  • Nonprofit organizations strive to solve community and social problems and to create new social values. Nonprofit organizations have the role to create citizenship and social capital - trust, norms and networks - in community. Social capital, an invisible and soft capital has increasingly become important to a sustainable management of an organization.
  • We hope to conduct collaborative research with willing corporations and organizations for measuring social capital at community/organizational levels and for making practical proposals on how to create and utilize social capital with viewpoints of partnership with nonprofit organizations and human resource development.
実用化イメージ

Researchers

Graduate School of Economics and Management

Yuko Nishide

[Human rights education]

Multicultural collaboration and Human Rights Education

NEXT
PREV
特徴・独自性
  • In this research, students from various backgrounds study human rights together to see whether human rights could be the universal topic for students to start and developing their discussions. Thus, this research is trying to observe students' behavior and check their study outcome.
実用化イメージ

It would be great if I could collaborate with any researchers or associations to do comparative research under the topics of human rights or creating collaborative relationships among students from various backgrounds.

Researchers

Institute for Excellence in Higher Education

Mino Takamatsu

[Human vision]

Vision Sciences and Human Interfaces

NEXT
PREV
特徴・独自性
  • We study human vision and use the knowledge of the vision system for image sciences. Our research focuses on vision sciences from early to high level processes. Target processes include early passive visual processes such as motion, depth and color perception, and high level processes such as attention, interaction between vision and haptic perception and implicit effect of the perception. Our approach includes visual psychophysics, brain activity measurements, and computer modeling.
実用化イメージ

We apply the knowledge obtained from the basic research to propose methods to evaluation of displays, image contents, visual environments, and so on.

Researchers

Research Institute of Electrical Communication

Satoshi Shioiri

[Hybrid nanomaterials]

Supercritical Hydrothermal Synthesis of Organic-Inorganic Hybrid Nanoparticles

NEXT
PREV
特徴・独自性
  • We invented supercritical hydrothermal synthesis method for the synthesis of organic modified nanoparticles (NPs). Under the supercritical state, the organic molecules and metal salt aqueous solutions are miscible and water molecule works as an acid/base catalyst for the reactions. Organic-inorganic conjugate NPs can be synthesized under this condition. This hybrid NPs show high affinity with the organic solvent or the polymer matrix, which leads to fabricate the organic inorganic hybrid nanomaterials with the trade-off function (super hybird nanomaterials). These hybrid materials of polymer and ceramics fabricated with NPs achieve both high thermal conductivity and easy thin film flexible fabrication, namely trade-off function.
実用化イメージ

For example, by the surface modification of BN particles by supercritical method, affinity of BN and polymers could be improved, so that high BN content of hybrid materials, thus high thermal conductivity materials, could be synthesized. Also by dispersing high refractive index NPs like TiO2 or ZrO2 into polymers transparently, we can tune the refractive index of the polymers. CeO2 nanoparticles are expected to be used for high performance catalysts. To transfer those supercritical fluid nano technologies, a consortium was launched with more than 70 companies.

Researchers

Advanced Institute for Materials Research

Tadafumi Ajiri

[Hybrid particles]

Creation of Organic-Inorganic Hybrid Materials and their Application

NEXT
PREV
特徴・独自性
  • Organicl compounds, such as liquid-crsytals, polymers, etc., can be hybridized with inorganic materials in atomic level, in particuar, with nanoparticles. Both of high effeciency of processing ease for the former and high possibilities of physical properties for the latter can be attained through the complete solution of trade-off characteristics. For example, this atomic-level hybridization technique makes inorganic nanoparticles active for the response like a liquid crystal. By using this method, we expect we can conduct effective collaborative research in medical fields.
実用化イメージ

Researchers

International Center for Synchrotron Radiation Innovation Smart

Atsushi Muramatsu

Functional Uniform Nanoparticles Production and Their Industrial Use

NEXT
PREV
特徴・独自性
  • Nanoparticles and/or fine particles to be used for functional materials, such as semiconductor, photocatalysts, dielectric and/or piezoelectric materials, cosmetics, catalysts, etc., has been synthesized in liquid-phase. Their size, shape, composition, and structure have been <strong>precisely controlled</strong> along an expected usage. <strong>Tailor-made synthesis method</strong> has been provided for nanoparticles and/or fine particles the companies wish to use.
実用化イメージ

Until now, we have been supplying nanoparticles and/or fine particles of ITO (Indium Tin Oxides) as TCO, Bi based or Nb based particles for lead-free piezoelectric ceramics, perovskite-based oxides for dielectric materials etc. The gel-sol method as the main synthesis method for uniform particles makes the production cost reduced.

Researchers

International Center for Synchrotron Radiation Innovation Smart

Atsushi Muramatsu

[Hybrid Polymer]

Polymer-nanoparticle hybrid materials

NEXT
PREV
特徴・独自性
  • Hybrid materials that show multi-functions of polymer and nanoparticles are expected to be used in future industries, and thus many research and development have been actively conducted. However, since the affinity of polymer and inorganic nanoparticles is very low, in most of the cases, properties of different materials are incompatible in the hybrid materials. To create the hybrid materials with incompatible multi-functions has been considered a difficult task.
  • However, by using supercritical fluid technology, we have succeeded in making hybrid materials with incompatible multi-functions.
実用化イメージ

Now, variety of hybrid materials are being developed, including
・Transparent, flexible, high reflective index, and high fabricability,
・Flexible, high heat conductivity, low electric resistivity, and high fabricability.

Researchers

Advanced Institute for Materials Research

Tadafumi Ajiri

[Hydogen]

Powder Processing Contributing to the Global Environmental Protection

NEXT
PREV
特徴・独自性
  • Material properties and characteristics of the product as a raw material powder are dependent on the particle packing structure as well as the chemical composition. Sophisticated control of the powder processing such as mixing and grinding is strongly required. In our laboratory, we are creating the simulation method as a tool for controlling the powder processing and optimizing the powder process for achieving a resource-saving and energy-saving by the computer simulation.
実用化イメージ

We are conducting research on analysis/optimization of powder processing such as grinding, mixing, and packing by using simulation, metal recycle from urban mine through active utilization of mechanochemical effect, and generation of energy from biomass.

Researchers

Institute of Multidisciplinary Research for Advanced Materials

KANO Junya

[Hydraulic fracturing]

Development of the method of Baby Borehole Hydraulic Fracturing, BABHY

特徴・独自性
  • For the effective measurement of the reopening pressure in hydraulic fracturing, it is necessary to use the testing equipment with sufficiently small compliance. This limitation makes it difficult to apply the hydraulic fracturing for the measurement of the maximum stress, because the compliance of conventional equipments is generally so large. Taking account of this situation, we proposed a new concept which allows us to do the in-situ tests of hydraulic fracturing for stress measurement at so deep depths as more than 1 km. We call the concept the Baby Borehole Hydrofracturing, BABHY for short. In order to put the new concept into practice, we developed the BABHY sonde and finally we succeeded to carry out hydraulic fracturing test by using the tools in a vertical borehole of 811 m depth. We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.
実用化イメージ

Researchers

Institute of Fluid Science

Takatoshi Ito

[hydride]

“HYDRIDE" Researches for Energy Applications

NEXT
PREV
特徴・独自性
  • This group is engaged in basic and applied researches of "hydrides" for practical use in hydrogen energy system. The main subject is the exploration of advanced hydrogen storage materials which support hydrogen energy technologies such as fuel cells. Currently, we synthesize a wide variety of novel hydrides composed of lightweight metals with specific nano-structures using advanced techniques for crystal and electronic structure analyses. In addition to the hydrogen storage, we develop the wide research fields related to hydrides, such as fast lithium ionic conductors.
実用化イメージ

Besides the contributions in industrial progress through the material development for future hydrogen energy system and next-generation secondary battery, we positively provide technical assistance to organizations and companies concerned about our findings.

Researchers

Advanced Institute for Materials Research

Shin-Ichi Orimo

[Hydrogel]

Bio-Hybrid MEMS for Medical, Environmental and Food Engineering

NEXT
PREV
特徴・独自性
  • We have developed original manufacturing techniques for bio-hybrid MEMSs that utilize special functions of bio-elements, proteins and living cells, for molecular selective sensing and power generation from natural fuels.
  • (1) Conducting polymer electrodes printed on hydrogels (image 1)
  • (2) Dynamic control of bio-adhesion by electrochemical means (image 2)
  • (3) Micro Biofuel Cells with flexible enzyme electrode patches (image 3)
実用化イメージ

We hope to conduct collaborative research with a willing company for a practical application of these technologies in industry.

Researchers

Graduate School of Engineering

Matsuhiko Nishizawa

[hydrogen]

“HYDRIDE" Researches for Energy Applications

NEXT
PREV
特徴・独自性
  • This group is engaged in basic and applied researches of "hydrides" for practical use in hydrogen energy system. The main subject is the exploration of advanced hydrogen storage materials which support hydrogen energy technologies such as fuel cells. Currently, we synthesize a wide variety of novel hydrides composed of lightweight metals with specific nano-structures using advanced techniques for crystal and electronic structure analyses. In addition to the hydrogen storage, we develop the wide research fields related to hydrides, such as fast lithium ionic conductors.
実用化イメージ

Besides the contributions in industrial progress through the material development for future hydrogen energy system and next-generation secondary battery, we positively provide technical assistance to organizations and companies concerned about our findings.

Researchers

Advanced Institute for Materials Research

Shin-Ichi Orimo

Hydrogen embrittlement of high strength steels

NEXT
PREV
特徴・独自性
  • We are studying hydrogen embrittlement property of high strength steels from the aspects of both the effect of hydrogen on mechanical properties of high strength steels and hydrogen uptake behavior in corrosive environments. The topics of our study includes clarification of mechanism of hydrogen embrittlement of various steels, investigation of hydrogen entry caused by corrosion using electrochemical techniques, hydrogen visualization, proposing evaluation methods for hydrogen embrittlement property and so forth.
実用化イメージ

Collaborative research in the field of hydrogen embrittlement, for example, hydrogen embrittlement properties of high strength steels and the effects of metallographic structure and hydrogen traps, proposal of evaluation methods for hydrogen embrittlement property for some specific steel and for parts with specific shape, development of novel hydrogen visualization techniques.

Researchers

Institute for Materials Research

Eiji Akiyama

Development of integrated safety management technology for hydrogen energy systems

NEXT
PREV
特徴・独自性
  • To investigate the diffusion and combustion phenomena of reactive hydrogen gas leakage when a high-pressure hydrogen tank fails due to crack propagation caused by an initial defect, we have developed a coupled analysis method that simultaneously analyzes the material structure and reactive turbulent multiphase flow through an interdisciplinary research approach. Furthermore, we have developed a new numerical prediction method related to the diffusion flow characteristics and combustion limits of hydrogen leaking due to crack propagation failure of high-pressure tank bulkheads.
実用化イメージ

We contribute to the design of hydrogen storage containers for various types of transportation equipment and the development of safety guidelines and risk management for hydrogen station configurations.

Researchers

Institute of Fluid Science

Jun Ishimoto

Cavitation Peening

NEXT
PREV
特徴・独自性
  • Surface modification method to improve fatigue strength has been developed using cavitation impacts, which are normally causes severe damage in hydraulic machineries. The method was called "cavitation peening". In order to make clear the mechanism, a load controlled plate bending fatigue test machine was developed. It was proved by using the test machine that the threshold level of stress intensity factor was improved about 1.9 times by cavitation peening. The mitigation of hydrogen embrittlement by cavitation peening was also improved.
実用化イメージ

The cavitation peening can apply to component of automobile and forging die. We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.

Researchers

Graduate School of Engineering

Hitoshi Soyama

Development of Solid-State-Ionics Materials for Energy Conversion, Storage and Utilization

NEXT
PREV
特徴・独自性
  • Our focus is on the development of solid-state-ionics materials to be used for a variety of energy conversion systems. To further improve the performance of fuel cells and lithium batteries, novel ionic conductors and mixed conductors with high ionic conductivity and chemical stability are highly demanded. We have been developing such the materials based on defect chemistry and thermodynamics of ceramics, and trying to apply those materials to actual energy conversion devices.
実用化イメージ

To date, a hydrogen production system utilizing oxygen permeable membranes and an all-solid-state battery have been prepared.

Researchers

Graduate School of Engineering

Hitoshi Takamura

[Hydrogen Embrittlement]

Cavitation Peening

NEXT
PREV
特徴・独自性
  • Surface modification method to improve fatigue strength has been developed using cavitation impacts, which are normally causes severe damage in hydraulic machineries. The method was called "cavitation peening". In order to make clear the mechanism, a load controlled plate bending fatigue test machine was developed. It was proved by using the test machine that the threshold level of stress intensity factor was improved about 1.9 times by cavitation peening. The mitigation of hydrogen embrittlement by cavitation peening was also improved.
実用化イメージ

The cavitation peening can apply to component of automobile and forging die. We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.

Researchers

Graduate School of Engineering

Hitoshi Soyama