"I" Keywords - 62 Result(s)

 I

[Ignition]

Identification of Ignition and Combustion Characteristics by a Micro Flow Rector with a Temperature Gradient

NEXT
PREV
特徴・独自性
  • We have developed a methodology for identifying general ignition and combustion characteristics of gaseous and liquid fuels including bio and synthetic fuels. It enables identification of ignition and combustion characteristics of new fuels prior to application for practical combustion devices. The reactor system consists of a small diameter channel which has a temperature gradient from room temperature to the auto ignition temperature and thus reaction characteristics in different temperature levels can be easily investigated. Such a measurement had required research level skills and special devices such as rapid compression machine or shock tube which is costly in general, however, the micro flow reactor with temperature gradient enables reaction analysis easily.
実用化イメージ

It is expected to contribute to the designing of combustion devices, developments of new fuels, and chemical promoter and inhibitor.

Researchers

Institute of Fluid Science

Kaoru Maruta

[Ignition inhibitor]

Identification of Ignition and Combustion Characteristics by a Micro Flow Rector with a Temperature Gradient

NEXT
PREV
特徴・独自性
  • We have developed a methodology for identifying general ignition and combustion characteristics of gaseous and liquid fuels including bio and synthetic fuels. It enables identification of ignition and combustion characteristics of new fuels prior to application for practical combustion devices. The reactor system consists of a small diameter channel which has a temperature gradient from room temperature to the auto ignition temperature and thus reaction characteristics in different temperature levels can be easily investigated. Such a measurement had required research level skills and special devices such as rapid compression machine or shock tube which is costly in general, however, the micro flow reactor with temperature gradient enables reaction analysis easily.
実用化イメージ

It is expected to contribute to the designing of combustion devices, developments of new fuels, and chemical promoter and inhibitor.

Researchers

Institute of Fluid Science

Kaoru Maruta

[Ignition promoter]

Identification of Ignition and Combustion Characteristics by a Micro Flow Rector with a Temperature Gradient

NEXT
PREV
特徴・独自性
  • We have developed a methodology for identifying general ignition and combustion characteristics of gaseous and liquid fuels including bio and synthetic fuels. It enables identification of ignition and combustion characteristics of new fuels prior to application for practical combustion devices. The reactor system consists of a small diameter channel which has a temperature gradient from room temperature to the auto ignition temperature and thus reaction characteristics in different temperature levels can be easily investigated. Such a measurement had required research level skills and special devices such as rapid compression machine or shock tube which is costly in general, however, the micro flow reactor with temperature gradient enables reaction analysis easily.
実用化イメージ

It is expected to contribute to the designing of combustion devices, developments of new fuels, and chemical promoter and inhibitor.

Researchers

Institute of Fluid Science

Kaoru Maruta

[image processing]

Visual Computing with Secure ICT in the Big Data Era

NEXT
PREV
特徴・独自性
  • Our study focuses on sensing, processing, recognition, understanding, and analysis of enormous visual data collected in real-world environments. We have invented a set of advanced techniques of sub-pixel image analysis using phase-based image matching. Potential applications include personal recognition using various biometric traits (e.g., face, fingerprint, palm print, finger knuckle print, iris, and medical radiographs), machine vision, multi-view 3D reconstruction, image database search, and medical image computing. We are also studying fundamental techniques for building secure ICT infrastructure for the big data era; our research interests include tamper-resistant cryptographic processing and biometrics-based secure remote authentication.
実用化イメージ

We can provide collaboration and information exchange services for industries and other research organizations in the fields of image processing, computer vision, information security, biometrics, LSI design, and embedded system technologies. Many researchers and engineers from various companies, universities, and research institutions have visited our laboratory regardless of their technology fields. Our staff at the Intelligent Information System (IIS) Research Center will welcome potential collaborators: info@iisrc.ecei.tohoku.ac.jp

Researchers

Administrative Staff

Takafumi Aoki

[Image Recognition]

Visual Computing with Secure ICT in the Big Data Era

NEXT
PREV
特徴・独自性
  • Our study focuses on sensing, processing, recognition, understanding, and analysis of enormous visual data collected in real-world environments. We have invented a set of advanced techniques of sub-pixel image analysis using phase-based image matching. Potential applications include personal recognition using various biometric traits (e.g., face, fingerprint, palm print, finger knuckle print, iris, and medical radiographs), machine vision, multi-view 3D reconstruction, image database search, and medical image computing. We are also studying fundamental techniques for building secure ICT infrastructure for the big data era; our research interests include tamper-resistant cryptographic processing and biometrics-based secure remote authentication.
実用化イメージ

We can provide collaboration and information exchange services for industries and other research organizations in the fields of image processing, computer vision, information security, biometrics, LSI design, and embedded system technologies. Many researchers and engineers from various companies, universities, and research institutions have visited our laboratory regardless of their technology fields. Our staff at the Intelligent Information System (IIS) Research Center will welcome potential collaborators: info@iisrc.ecei.tohoku.ac.jp

Researchers

Administrative Staff

Takafumi Aoki

[Image sensor]

Development of Advanced Device and Process Technologies and New Image Sensors

NEXT
PREV
特徴・独自性
  • Toward the ultimate performances of image sensors, advanced research activities are being conducted that cover a wide range of technology fields from cleanroom infrastructure, materials, process equipment, process, device, circuit, assembly, signal processing, measurement/evaluation and reliability. Following technologies have been successfully commercialized:
  • A fast and accurate measurement technology of electrical characteristics for over 1 million transistors
  • A wide dynamic range CMOS image sensor technology capturing images over five decade brightness ranges
  • An ultra-fast CMOS image sensor technology with 10 million frames/sec
実用化イメージ

Followings are available for industry collaborators:
A. 200mm-diameter-wafer silicon device fabrication utilizing the ultra-clean facility including wafer mutual fabrication processing between device manufacturers.
B. Process technology development and various kinds of analyses.
C. Development of new image sensors.

Researchers

New Industry Creation Hatchery Center

Shigetoshi Sugawa

[Imaging]

X-Ray Phase Imaging for High-Sensitive Non-Destructive Testing

NEXT
PREV
特徴・独自性
  • Conventional X-ray imaging methods that rely on X-ray attenuation cannot generate clear contrast in the observation of low-density materials such as polymers consisting of low-Z elements. However, the sensitivity to the materials can be improved drastically by X-ray phase imaging that detects X-ray refraction caused by the materials. X-ray Talbot or Talbot-Lau interferometry consisting of X-ray transmission gratings is now constructed in laboratories for X-ray phase imaging. X-ray phase tomography is also realized, enabling high-sensitive three-dimensional observation.
  • X-ray phase imaging can be utilized for X-ray non-destructive testing of industrial products and baggage that cannot be checked conventionally.
実用化イメージ

We aim at appending a phase-contrast mode to micro-CT apparatuses and developing screening apparatuses in production lines.

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Atsushi Momose

Development of Passive Millimeter-wave Imaging Device for Practical Applications

NEXT
PREV
特徴・独自性
  • Millimeter wave (MM-wave) which is one of the electromagnetic wave transparent the clothes, the fire and the wall etc. and all natural materials including objects in clothes always radiate the electromagnetic wave as the thermal noise. Using these characteristics of MM-wave, imaging of concealed objects in clothes can be accomplished in a noninvasive and noncontact manner. This technique is called Passive Millimeter Wave (PMMW) Imaging technique and we have developed a PMMW imaging device for security applications.
  • The wave length of MM-wave frequency range is from 1 mm to 10 mm and the spatial resolution of images in MM-wave range is low compared with sub-millimeter (terahertz) range or Infra-Red range, however, higher transmittance through clothes can be obtained compared with higher frequency range. Furthermore, low noise amplifier (LNA) exists which could be the advantage of MM-wave compared with higher frequency ranges.
  • Now the device was developed for the purpose of keeping safe and secure aircrafts and ships etc., we hope to conduct collaborative research with a willing company for a practical application of this technology in industrial fields such as the fire rescue, the police equipment and the medical devices.
実用化イメージ

Researchers

Graduate School of Engineering

Hiroyasu Sato

Imaging and photoregulation of biological functions

特徴・独自性
  • To properly understand the functions of biomolecules, it is essential to observe them under physiological conditions where the interactions with other biomolecules are preserved. Therefore, we are developing new functional molecules using both organic chemistry and protein science approaches, and working on the visualization and optical control of biomolecules and their functions. Especially, we have developed fluorescent probes that quantitate the concentration of biomolecules or ions in subcellular regions such as organelles and caged compounds and photoswitches that optically manipulate the biomolecular functions.
実用化イメージ

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Shin Mizukami

High-speed X-ray phase tomography with a millisecond-order temporal resolution

NEXT
PREV
特徴・独自性
  • We successfully realized millisecond-order X-ray phase tomography using a fringe-scanning method in grating-based X-ray interferometry. We obtained phase tomograms with a measurement time of 4.43 ms using a white synchrotron X-ray beam. The use of a fringe-scanning method enables us to achieve not only a higher spatial resolution but also a higher signal-to-noise ratio than that attained by the Fourier transform method. In addition, our approach can be applied to realize four-dimensional or high-throughput X-ray tomography for samples that can be rotated at a high speed.
実用化イメージ

Researchers

International Center for Synchrotron Radiation Innovation Smart

Wataru Yashiro

[Immediate Implant Placement in Extraction Sockets]

newBioimplants that are as close to natural teeth as possible

概要

By applying nanoscale surface modification to individually designed 3D-printed titanium implants based on CT data, a biomimetic microenvironment is recreated, enabling regeneration of periodontal ligament-like tissue through host stem cell induction. This provides a novel treatment approach without cell transplantation for cases where existing implants are difficult to adapt.

従来技術との比較

Conventional implant treatment assumes direct bonding with bone, thus disregarding the regeneration of periodontal tissues such as the periodontal ligament. Furthermore, some patients avoid treatment due to concerns about bone-cutting surgery and multiple invasive procedures. This technology utilizes a nano-surface to induce stem cells, forming periodontal tissues similar to natural teeth. This enables the restoration of natural occlusal sensation through a single minimally invasive procedure.

特徴・独自性
  • Custom-designed for each patient's root morphology, it reproduces natural force transmission and chewing sensation. Furthermore, by utilizing nanostructures to control cell adhesion and differentiation, it enables periodontal tissue reconstruction without the need for cell transplantation or regenerative factor administration.
実用化イメージ

In the future, we aim to collaborate with implant manufacturers to advance mass-production prototyping and quality evaluation, targeting practical application as a medical device. We also seek partnerships with companies and management talent who can jointly undertake strategic planning and clinical deployment for commercialization.

Researchers

Graduate School of Biomedical Engineering

Masahiro Yamada

[Immunity]

Development of an intranodal administration method

NEXT
PREV
概要

The response rate of systemic chemotherapy for metastatic lymph nodes is low. This invention presents the optimal values for solvent properties, especially viscosity, in a method for directly administering drugs to lymph nodes (lymphatic drug delivery system). In 2024, a specified clinical study (jRCTs021230040) on lymph node metastasis was started at the Iwate Medical University Hospital Head and Neck Cancer Center.

従来技術との比較

In systemic chemotherapy for metastatic lymph nodes, the amount of drug delivered to the metastatic lymph nodes is small. This is due to the increase in internal pressure caused by tumor growth in the lymph nodes and the disappearance of microvessels caused by the formation of tumor mass. In this invention, we clarified the optimal viscosity range of the solvent for the lymphatic drug delivery system, which directly administers drugs to lymph nodes.

特徴・独自性
  • The amount of anticancer drug required to treat one metastatic lymph node is 1/100 to 1/1000 of the systemic dose.
  • The drug can be administered into the lymph node under ultrasound guidance.
  • An international patent has been filed for the solvent of the administered drug.
実用化イメージ

1. Treatment and prophylactic therapy of affiliated lymph nodes in head and neck cancer, breast cancer, etc.
2. Pharmaceutical companies aiming to develop drugs by drug repositioning and generics
3. Medical device manufacturers aiming to develop a dosing system

Researchers

Graduate School of Biomedical Engineering

Tetsuya Kodama

[Immunobiotics]

Development of Immunobiotic Evaluation System for Functional Feeds as a Livestock Animal Model

NEXT
PREV
特徴・独自性
  • Pattern recognition receptor (PRR) family plays an important role in the defense through recognition of pathogen-associated molecular patterns or microorganisms-associated molecular patterns (PAMPs/MAMPs).
  • Some functional feed materials are thought to regulate intestinal immunity by contact and stimulation of epithelial cells and immunocompetent cells via PRRs in the gastrointestinal tract and induction of cytokine production. In this "new world" of feed immunology, however, much remains unknown about the underlying mechanisms of intestinal immunity because of lack of appropriate intestinal immunoassay system for livestock animals.
  • We have advanced application of originally established porcine and bovine intestinal epitheliocytes (PIE, BIE) cell lines (see photo) for evaluation of immunobiotics and immunogenics exerting anti-inflammatory responses both in PIE cell monolayer and co-culture system with porcine peyer's patch immune cells as a peyer's patch culture model (see illustration).
実用化イメージ

This evaluation system may also contribute to elucidate immunoregulatory mechanism of immunobiotics and immunogenics mediated by pattern recognition receptors essential to future development of not only immunobiotic feeds but also vaccines using immunobiotics to prevent specific diseases. This can benefit mankind by offering immunobiotic feeds as a safer alternative to conventional antibiotic drug therapy.

Researchers

Graduate School of Agricultural Science

Haruki Kitazawa

[Immunogenics]

Development of Immunobiotic Evaluation System for Functional Feeds as a Livestock Animal Model

NEXT
PREV
特徴・独自性
  • Pattern recognition receptor (PRR) family plays an important role in the defense through recognition of pathogen-associated molecular patterns or microorganisms-associated molecular patterns (PAMPs/MAMPs).
  • Some functional feed materials are thought to regulate intestinal immunity by contact and stimulation of epithelial cells and immunocompetent cells via PRRs in the gastrointestinal tract and induction of cytokine production. In this "new world" of feed immunology, however, much remains unknown about the underlying mechanisms of intestinal immunity because of lack of appropriate intestinal immunoassay system for livestock animals.
  • We have advanced application of originally established porcine and bovine intestinal epitheliocytes (PIE, BIE) cell lines (see photo) for evaluation of immunobiotics and immunogenics exerting anti-inflammatory responses both in PIE cell monolayer and co-culture system with porcine peyer's patch immune cells as a peyer's patch culture model (see illustration).
実用化イメージ

This evaluation system may also contribute to elucidate immunoregulatory mechanism of immunobiotics and immunogenics mediated by pattern recognition receptors essential to future development of not only immunobiotic feeds but also vaccines using immunobiotics to prevent specific diseases. This can benefit mankind by offering immunobiotic feeds as a safer alternative to conventional antibiotic drug therapy.

Researchers

Graduate School of Agricultural Science

Haruki Kitazawa

[Immunohistochemistry]

Hormone Actions in Human Breast Carcinoma

NEXT
PREV
特徴・独自性
  • Breast cancer is one of the most common malignancies in women worldwide. Therefore, it is very important to investigate biological features of breast carcinoma in order to improve clinical outcome of the patients. It is well known that estrogens play important roles in the development of human breast carcinomas, and endocrine therapies are frequently used in these patients to block the intratumoral estrogen actions. In the Division of Pathology and Histotechnology, we analyze hormone actions in breast carcinoma by pathological methods as well as various molecular biological techniques.
実用化イメージ

It will be possible to newly develop diagnostic techniques regarding prediction of prognosis and/or effectiveness of treatment in breast cancer patients.

Researchers

Graduate School of Medicine

Takashi Suzuki

[Immunosssay system]

Development of Immunobiotic Evaluation System for Functional Feeds as a Livestock Animal Model

NEXT
PREV
特徴・独自性
  • Pattern recognition receptor (PRR) family plays an important role in the defense through recognition of pathogen-associated molecular patterns or microorganisms-associated molecular patterns (PAMPs/MAMPs).
  • Some functional feed materials are thought to regulate intestinal immunity by contact and stimulation of epithelial cells and immunocompetent cells via PRRs in the gastrointestinal tract and induction of cytokine production. In this "new world" of feed immunology, however, much remains unknown about the underlying mechanisms of intestinal immunity because of lack of appropriate intestinal immunoassay system for livestock animals.
  • We have advanced application of originally established porcine and bovine intestinal epitheliocytes (PIE, BIE) cell lines (see photo) for evaluation of immunobiotics and immunogenics exerting anti-inflammatory responses both in PIE cell monolayer and co-culture system with porcine peyer's patch immune cells as a peyer's patch culture model (see illustration).
実用化イメージ

This evaluation system may also contribute to elucidate immunoregulatory mechanism of immunobiotics and immunogenics mediated by pattern recognition receptors essential to future development of not only immunobiotic feeds but also vaccines using immunobiotics to prevent specific diseases. This can benefit mankind by offering immunobiotic feeds as a safer alternative to conventional antibiotic drug therapy.

Researchers

Graduate School of Agricultural Science

Haruki Kitazawa

[Implant Manufacturing Technology]

newBioimplants that are as close to natural teeth as possible

概要

By applying nanoscale surface modification to individually designed 3D-printed titanium implants based on CT data, a biomimetic microenvironment is recreated, enabling regeneration of periodontal ligament-like tissue through host stem cell induction. This provides a novel treatment approach without cell transplantation for cases where existing implants are difficult to adapt.

従来技術との比較

Conventional implant treatment assumes direct bonding with bone, thus disregarding the regeneration of periodontal tissues such as the periodontal ligament. Furthermore, some patients avoid treatment due to concerns about bone-cutting surgery and multiple invasive procedures. This technology utilizes a nano-surface to induce stem cells, forming periodontal tissues similar to natural teeth. This enables the restoration of natural occlusal sensation through a single minimally invasive procedure.

特徴・独自性
  • Custom-designed for each patient's root morphology, it reproduces natural force transmission and chewing sensation. Furthermore, by utilizing nanostructures to control cell adhesion and differentiation, it enables periodontal tissue reconstruction without the need for cell transplantation or regenerative factor administration.
実用化イメージ

In the future, we aim to collaborate with implant manufacturers to advance mass-production prototyping and quality evaluation, targeting practical application as a medical device. We also seek partnerships with companies and management talent who can jointly undertake strategic planning and clinical deployment for commercialization.

Researchers

Graduate School of Biomedical Engineering

Masahiro Yamada

[Implementation Security]

Cyber Physical Systems Security and Its Applications

NEXT
PREV
特徴・独自性
  • Our study focuses on information security technologies for the next-generation ICT society fusing real-world and cyber-space computing. We are now conducting the research and development of ultra-high-speed, ultra-low power LSI computing to perform security functions such as encryption and secure computing, secure implementation technologies to protect systems from various physical attacks (attacks carried out by physical access to the system), and security optimization technologies tailored to the system usage environment and application area.
実用化イメージ

We can provide collaboration and information exchange services in the fields of information security. In particular, we have experiences of domestic/international collaborative researches on embedded security with some companies, universities, and governmental institutes.

Researchers

Research Institute of Electrical Communication

Naofumi Homma

[improvement of crop seed production]

Improvement of Seed Production by Using Reproductive Trait in Crops, Especially, Rice and Cruciferous Crops

NEXT
PREV
概要

The recent spate of extreme weather events is threatening to reduce crop seed and fruit production. We have identified a catalog of genes that respond under low and high temperature stress, and will construct a system that enables production under temperature stress through genome editing and other methods.

従来技術との比較

In addition to conventionally used genetic recombination methods, genome editing technology has made it possible to modify genes that can be used for practical purposes.

特徴・独自性
  • Crops are important for food, environment recovery, energy production, and amenity activity for human being. For improvement of crop seed production, the breeding of crops having environmental stress, is important. Especially the developmental stage from pollination to fertilization is quite weak for these environmental stresses. Thus, by breeding of reproductive trait, we will establish the high productivity and quality of crop seeds. From our research, we found several stress-tolerant genes. We already started the research by both basic and applied level.
実用化イメージ

For application, we evaluated by taking prize for application in 2001. And our basic data has been published in international Journal, "Nature" and "Science". If anyone is interested in these genes, we hope to conduct to collaborative research for establishing the useful breeding lines.

Researchers

Graduate School of Life Sciences

Masao Watanabe

[In vivo microenvironment]

newDevelopment of a stromal function chip for reproduction of flow and transport phenomena in microenvironments in vivo.

NEXT
PREV
概要

Cells comprising biological tissues are surrounded by a structure known as the stroma, and their behavioradapts in response to stimuli generated by flow and transport phenomena. Despite its importance, ourunderstanding of how cells respond to their surrounding microenvironment remains limited, hindering thedevelopment of effective disease prevention and treatment strategies. A significant challenge has been thedifficulty in observing cellular behavior while simultaneously controlling the local culture environment.Although microfluidic devices have become increasingly prevalent in recent years, they have not fullyaddressed the need for comprehensive environmental control. To overcome this limitation, we developed the"stromal function chip," which focuses on three critical environmental factors within the stroma: oxygenconcentration, pH, and interstitial flow. This innovative platform enables precise and rapid manipulation ofthese parameters while facilitating real-time observation of both individual cellular responses and complexcell-cell interactions.

従来技術との比較

Traditionally, stage incubators mounted on microscopes have been employed to maintain culture conditionsduring time-lapse observations of cellular behavior. However, these conventional systems present significantlimitations in actively and rapidly controlling localized changes within the culture microenvironment. Whilerecent advances in microfluidic devices and organ-on-a-chip technologies have enhanced our ability toobserve cellular responses under controlled conditions, these approaches still exhibit considerable constraintsin achieving comprehensive environmental regulation. In contrast, our newly developed chip providesprecise, dynamic, and immediate control over the culture microenvironment during cellular experiments,enabling high-fidelity visualization and quantification of complex cellular dynamics in response to environmental stimuli.

特徴・独自性
  • The stromal function chip features sophisticated architecture comprising cell culture channels with multiplegas channels strategically positioned in vertical alignment above them. Through the controlled delivery ofprecisely mixed gases containing specific oxygen and carbon dioxide concentrations to these gas channels,the chip facilitates gas exchange that enables exquisite regulation of both oxygen concentration and pHwithin the cell culture microenvironment. This approach represents a significant advancement overconventional chemical reaction-based methods, as it eliminates potential cellular toxicity while providinghighly flexible and dynamic control over oxygen concentration and pH. Furthermore, the chip's innovativedesign allows for the precise modulation of interstitial flow—achieved by embedding hydrogel within theculture channels and establishing controlled hydrostatic pressure gradients between inlet and outlet ports. Bysimultaneously manipulating these three critical environmental factors—oxygen concentration, pH, andinterstitial flow—researchers can systematically investigate cellular response mechanisms and characterizehow cells adapt to specific stromal microenvironmental conditions, thereby advancing our understanding oftissue physiology and pathophysiology.
実用化イメージ

By precisely recapitulating the hypoxic and acidic microenvironmental conditions that characterize tumorniches and inflammatory sites, this innovative chip serves as a powerful platform for pre-clinical evaluationof therapeutic efficacy, enabling researchers to determine optimal drug candidates and dosage regimens priorto in vivo studies. Moreover, the system serves as a platform/tool for fundamental medical and biologicalinvestigations, allowing for high-resolution cellular observation and analysis under rigorously controlled andphysiologically relevant culture conditions.

Researchers

Institute of Fluid Science

Kenichi Funamoto