Tohoku University. Research Profiles

LANGUAGE

"L" Keywords - 42 Result(s)

L

 L

[L1<sub>0</sub> -FeNi magnet]

Development of Soft Magnetic Materials and Magnet Consisting of Complete Rare-Earth Free Elements Both with Ultimately-High-Efficient Types Contributing to Energy- and Resource-Saving by Precise Controlling their Nanostructures

NEXT
PREV
Features

Features and Originalities
Research activities include high functionalization and attachment of additional values to the soft magnetic materials of iron-group based metallic glasses, nanocrystalline and amorphous alloys and magnets, both from non-equilibrium alloys with useful properties that have not been achieved by conventional crystalline alloys. Recent successful results contain newly-developed nanocrystalline soft magnetic alloys with high saturation magnetic flux density of 1.8 Tesla or higher and low core loss of ~1/3 to that of the Silicon steels and fabrication of rare-earth free L10-FeNi magnets.

Possible Academic/Industrial Collaborations
The target materials possess high potential as industrial materials owing to Fe-based alloy with low material costs accompanied by rare-earth-free nature and to producibility in an air environment. Expectations are contributions to energy-saving, saving mineral resources and reducing carbon dioxide emissions through collaborations with companies dealing with materials and applications.

Targeted Application(s)/Industry

New Industry Creation Hatchery Center
MAKINO Akihiro, Professor Doctor of Engineering

[Land Use Management]

Study on Land Use Management and Residential Movement in Tsunami Affected Areas

NEXT
PREV
Features

The study focused on areas affected by the tsunami caused by the Great East Japan Earthquake, and clarified the impact of reconstruction projects on spatial transformation and residents' residential relocation, as well as residents' satisfaction with the projects. In the boundary area of architecture, urban planning, and landscape architecture, we combine qualitative research, such as participatory observation with sociological and local community perspectives, and quantitative research using data obtained in the field. I would like to explore better relationships between people and nature, and propose methods that lead to sustainable urban development.

Targeted Application(s)/Industry

I have practical experience in post-disaster land use and workshops with local residents. I believe that they will be able to make use of their knowledge and experience in the pre-disaster reconstruction efforts in the areas that are expected to be affected by the disaster in the future.

Graduate school of Engineering
ARAKI Shoko, Assistant Professor Ph.D.

[Landscape]

Study on Land Use Management and Residential Movement in Tsunami Affected Areas

NEXT
PREV
Features

The study focused on areas affected by the tsunami caused by the Great East Japan Earthquake, and clarified the impact of reconstruction projects on spatial transformation and residents' residential relocation, as well as residents' satisfaction with the projects. In the boundary area of architecture, urban planning, and landscape architecture, we combine qualitative research, such as participatory observation with sociological and local community perspectives, and quantitative research using data obtained in the field. I would like to explore better relationships between people and nature, and propose methods that lead to sustainable urban development.

Targeted Application(s)/Industry

I have practical experience in post-disaster land use and workshops with local residents. I believe that they will be able to make use of their knowledge and experience in the pre-disaster reconstruction efforts in the areas that are expected to be affected by the disaster in the future.

Graduate school of Engineering
ARAKI Shoko, Assistant Professor Ph.D.

[Landslide Monitoring]

[language]

Universal Design in Language Use

NEXT
PREV
Features

My current research topic is "universal design in language use," with special reference to order in language and thought. In particular, I am investigating (1) similarities and differences in neural processing of languages with different basic word orders, (2) to what extent the order in non-verbal thought is affected by the order in language, and vice versa, and (3) what is the optimal order in human language and human thought, if any.

Targeted Application(s)/Industry

Although I am conducting basic research, I believe it helps develop (1) effective language teaching/learning methods, (2) rehabilitation programs for aphasia, (3) dynamic preservation of endangered languages/dialects, and so on.

Graduate School of Arts and Letters
KOIZUMI Masatoshi, Professor PhD

[language acquisition]

Universal Design in Language Use

NEXT
PREV
Features

My current research topic is "universal design in language use," with special reference to order in language and thought. In particular, I am investigating (1) similarities and differences in neural processing of languages with different basic word orders, (2) to what extent the order in non-verbal thought is affected by the order in language, and vice versa, and (3) what is the optimal order in human language and human thought, if any.

Targeted Application(s)/Industry

Although I am conducting basic research, I believe it helps develop (1) effective language teaching/learning methods, (2) rehabilitation programs for aphasia, (3) dynamic preservation of endangered languages/dialects, and so on.

Graduate School of Arts and Letters
KOIZUMI Masatoshi, Professor PhD

[language disorder]

Universal Design in Language Use

NEXT
PREV
Features

My current research topic is "universal design in language use," with special reference to order in language and thought. In particular, I am investigating (1) similarities and differences in neural processing of languages with different basic word orders, (2) to what extent the order in non-verbal thought is affected by the order in language, and vice versa, and (3) what is the optimal order in human language and human thought, if any.

Targeted Application(s)/Industry

Although I am conducting basic research, I believe it helps develop (1) effective language teaching/learning methods, (2) rehabilitation programs for aphasia, (3) dynamic preservation of endangered languages/dialects, and so on.

Graduate School of Arts and Letters
KOIZUMI Masatoshi, Professor PhD

[Laser]

Development of Terahertz Semiconductor Devices Using Novel Nano-Heterostructures and Materials and their ICT Applications

NEXT
PREV
Features

Terahertz coherent electromagnetic waves are expected to explore the potential application fields of future information and communications technologies. We are developing novel, ultra-broadband integrated signal-processing devices/systems operating in the terahertz frequency regime employing novel semiconductor nano-heterostructures and materials. We are challenging to develop room-temperature operating coherent and intense laser transistors and fast-response and highly sensitive detectors working for the next-generation beyond-5G terahertz wireless communications as well as safety and security terahertz imaging applications.

A. Ultimately-fast terahertz transistors utilizing graphene, carbon-based new material, and compound semiconductor heterojunction material systems:
Graphene-based novel terahertz photonics devices, breaking through the limit on conventional technology. Recently we have succeeded in single-mode terahertz lasing in a dual-gate graphene-channel laser transistor device at 100K. Moreover, we have succeeded in room-temperature terahertz coherent amplification in a dual-grating-gate graphene channel transistor promoted by current-driven graphene Dirac plasmon instability. The obtained maximal gain of 9% is four times as high as the quantum efficiency limit when terahertz photons interact directly with graphene electrons without excitation of graphene plasmons. These will be big steps towards realization of an intense, room-temperature operating graphene plasmonic terahertz laser transistors.

B. Frequency-tunable plasmon-resonant terahertz emitter and detectors and metamaterial circuits:
By using an original dual-grating-gate high-electron mobility transistor (DGG-HEMT) structure with InP-based material systems record-breaking ultrahigh-sensitive detection of terahertz radiation have been realized at room temperature.

Targeted Application(s)/Industry

By making full use of these world-leading device/circuit technologies, we are exploring future ultra-broadband 6G- and 7G-class wireless communication systems as well as spectroscopic/imaging systems for safety and security. We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.

Research Institute of Electrical Communication
OTSUJI Taiichi, Professor Doctor of Engineering

[Laser diagnostics]

Combustion and Atomization Technology in High-Pressure Gas Turbine Conditions

NEXT
PREV
Features

Combustion is a complex phenomenon composed of multi-dimensional dynamics of temperature, concentration, velocity, and chemical reactions. Advanced combustion technologies are essential for solving the environmental and energy issues. Our laboratory has a high-pressure combustion test facility which is a unique experimental facility in the world. Research projects have originality, especially in the field of high-pressure combustion and laser diagnostics, and focus on not only aerospace engineering and energy engineering including new fuel technology but also atomization technology and safety operations of chemical plants mostly operated at high pressure.

Targeted Application(s)/Industry

Potential collaborations are in the research fields of aerospace propulsions, automobile engines, power generations and chemical plants, in terms of development of gas turbine combustors for various fuels, generation and control of fuel atomizers, laser diagnostics of combustion and safety design of chemical reactors.

High Speed Reacting Flow Laboratory, Institute of Fluid Science
KOBAYASHI Hideaki, Professor Doctor of Engineering

[Laser fabrication]

Creation of a high functional bio-interface using laser fabrication

NEXT
PREV
Features

 Using laser fabrication, we are developing techniques to enhance material surface properties and functionality. For example, to create a functional interface, we aim to clarify, by way of simulation and experimentation, the phenomenon that occurs when the surface of a material is irradiated using a laser beam.
 We expect that the results of our research will be widely applicable, including biomedical devices.

■ Creation of biocompatible surfaces
 Materials used for artificial organs, vessels, and other bio-implants require excellent tissue and cell biocompatibility. Therefore, we are exploring the creation of biocompatible surfaces using a new laser irradiation process in this study.
 We have succeeded in imparting a biologically active function to titanium-based materials by applying the laser irradiation technique. When such a material that has a biologically active function is inserted in a living body, hydroxyapatite (the principal constituent of bones and teeth) precipitates on the surface. Using the laser irradiation technique, we can manufacture bone-adherent implants, and we envisage their application to artificial joints or dental implants.
 This research aims to discover such breakthrough solutions for biomedical applications using the laser irradiation technique.

Department of Mechanical Systems and Design, Graduate School of Engineering
MIZUTANI Masayoshi, Associate Professor Ph. D. (Engineering)

[Laser measurement]

Design and Fabrication of Micro-Optical Devices Based on Optics, Especially Optical MEMS and Sensors

NEXT
PREV
Features

On the basis of optical engineering, optical technologies for sensing mechanical motion, spectroscopic properties, and other physical/chemical characteristics are investigated. Moreover, using semiconductor micro/nano-fabrication technology, integrated micro-optical sensors, micro/nano optical systems, optical micro-electro-mechanical systems (MEMS) are studied. Micro laser scanner for display, deformable mirror for telescope, optical displacement encoder, and fluorescent analysis system are the examples of research topics.

Targeted Application(s)/Industry

Optical design, Optical industries, Industries relating to semiconductor micro fabrication and MEMS, optical telecommunications, etc.

New Industry Creation Hatchery Center
HANE Kazuhiro, Professor Doctor of Engineering

[laser treatment]

Development of Optical Sysytems for Noninvasive Treatment and Diagnosis

NEXT
PREV
Features

Optical fiber-based endoscopic systems for non-invasive treatment and diagnosis are developed. The fiber transmits high-powered laser light for treatment and low-powered light for diagnosis. We develop treatment and diagnosis systems utilizing not only common glass-based optical fibers but hollow-optical fibers. Hollow optical fibers deliver high-powered infrared lasers and light with wide range of wavelength from ultraviolet and far infrared.

Targeted Application(s)/Industry

Our potential collaborators will be medical device manufactures, as well as any electronic device, communication device, and measurement instrument manufactures considering new entry to the field.

Graduate School of Biomedical Engineering
MATSUURA Yuji, Professor

[laser-drilled screen printing]

Photo-Functional Advanced Materials for Nanofabrication by Nanoimprint Lithography

NEXT
PREV
Features

Nakagawa group has dedicated to pursue scientific principles for molecular control of interface function occurring at polymer/other material interfaces and to put them into practice in nanoimprint lithography promising as a next generation nanofabrication tool. We are developing advanced photo-functional materials such as sticking molecular layers for "fix by light", UV-curable resins and antisticking molecular layers for "preparation by light", fluorescent resist materials for "inspection by light", and hybrid optical materials "available to light" and new research tools such as mechanical measurement systems to evaluate release property of UV-curable resins.

Targeted Application(s)/Industry

Our research aims at creating new devices to control photon, electron, and magnetism.

Institute of Multidisciplinary Research for Advanced Materials
NAKAGAWA Masaru, Professor Doctor of Engineering

[late-onset hypogonadism ]

Prevention and amelioration of late-onset hypogonadism by food ingredients

NEXT
PREV
Features

Late-onset hypogonadism (LOH) is induced by age-related decline of testosterone synthesis, which leads to decrease muscle and sexual nature as well as mental symptoms such as depression. Now great attention is focused on prevention and amelioration of LOH via ingestion of foods and supplements.

We developed screening system of functional ingredients from food extracts for anti-LOH using testis-derived cells, and clarified that vitamins, nutraceuticals, and edible plant extracts have potentiating activities for the production of testosterone.

Targeted Application(s)/Industry

Graduate School of Agricultural Science
SHIRAKAWA Hitoshi, Professor Doctor of Agricultural Science

[LC/ESI-MS/MS]

Discovery of diagnostic markers by metabolomics

NEXT
PREV
Features

Losing cholesterol homeostasis with inborn errors of metabolisms or hepatobiliary diseases makes a change to in vivo cholesterol metabolism profile and causes the emergence of increased metabolites as conjugates in blood and urine. We have developed an LC/ESI-MS/MS method using fragment patterns characteristic of conjugation types for group-specific and comprehensive analysis of conjugated cholesterol metabolites. This method can contribute for an efficient discovery of diagnostic marker candidates toward various diseases.

Targeted Application(s)/Industry

After availability verification of candidates as diagnostic markers, it will be required screening tests. We have potential to collaborate with company for development of bioassay systems using antibodies or enzymes.

Tohoku University Hospital
MANO Nariyasu, Professor Doctor of Pharmaceutical Sciences

[Leakage]

Development of integrated safety management technology for hydrogen energy systems

NEXT
PREV
Features

To investigate the diffusion and combustion phenomena of reactive hydrogen gas leakage when a high-pressure hydrogen tank fails due to crack propagation caused by an initial defect, we have developed a coupled analysis method that simultaneously analyzes the material structure and reactive turbulent multiphase flow through an interdisciplinary research approach. Furthermore, we have developed a new numerical prediction method related to the diffusion flow characteristics and combustion limits of hydrogen leaking due to crack propagation failure of high-pressure tank bulkheads.

Targeted Application(s)/Industry

We contribute to the design of hydrogen storage containers for various types of transportation equipment and the development of safety guidelines and risk management for hydrogen station configurations.

Institute of Fluid Science
ISHIMOTO Jun, Professor Ph.D

[LED]

Lethal effects of blue light on insects

NEXT
PREV
Features

We revealed the strong lethal effect of short-wavelength visible light (blue light: 400–500 nm) on insects. That is, we found that blue light irradiation by using a common light-emitting diode (LED) can kill the eggs, larvae, pupae, and adults of various orders of insects. Our findings will provide clean and safe pest-control technique as well as important information on the hazards of exposure to visible light.

Targeted Application(s)/Industry

Graduate School of Agricultural Science
HORI Masatoshi, Professor Doctor of Philosophy

[lethal effect]

Lethal effects of blue light on insects

NEXT
PREV
Features

We revealed the strong lethal effect of short-wavelength visible light (blue light: 400–500 nm) on insects. That is, we found that blue light irradiation by using a common light-emitting diode (LED) can kill the eggs, larvae, pupae, and adults of various orders of insects. Our findings will provide clean and safe pest-control technique as well as important information on the hazards of exposure to visible light.

Targeted Application(s)/Industry

Graduate School of Agricultural Science
HORI Masatoshi, Professor Doctor of Philosophy

[Life Cycle Analysis]

Visualization of supply chain risks from the resource logistics perspective

NEXT
PREV
Features

With the increased global concerns of resource and environmental constraints of recent years, the role of mining, as a constituent of social responsibility associated with resource extraction and usage, is becoming increasingly important in the science, technology, and innovation policy. Under increasing public and shareholders' concerns of social and environmental sustainability, the fabrication industries require careful attention owing to their own risks related to the resources and materials that are used in their products and services. The Material Flow Analysis tool and Input output technique provide useful perspectives and valuable evidences for avoiding or minimizing the social and environmental risks related to the demand of resources.

Targeted Application(s)/Industry

Our developed model evaluates the risk weighted flow analysis by combining the resource logistics database and Global Link Input Output model. The estimated results shed light on how resource logistics prepares policy makers and R&D engineers to confront the risks behind resource usage and how the information should be shared among the stakeholders.

Graduate School of Environmental Studies
MATSUBAE Kazuyo, Professor Doctor of Economics

[light emitting diode (LED)]

R&D in Semiconductor Materials and their Device Applications Bringing System Evolutions

NEXT
PREV
Features

1. Development of Distributed Feedback (DFB) Laser Diodes (LD) widely used in optical communications systems realizing a highly information-based society. This LD increases the transmission capacity by 25,000 times per fiber which means the bit rate of 10Tb/s.

2. Nitride semiconductors famous for blue light emitting diodes.
(a) Proposal of InGaAlN system considering device applications in 1989
(b) Success in growth of single crystalline InGaN by metalorganic vapor phase epitaxy (MOVPE) in 1989
(c) Prediction of band-gap energy (Eg) of InN much smaller than the values reported in 1980s and its   experimental confirmation in 2002
(d) Observation of photoluminescence from InGaN in 1991
(e) Prediction of phase separation in InGaAlN in 1997

Targeted Application(s)/Industry

DFB-LD: Fabrication of periodic structure with submicron scale, Epitaxial growth of semiconductor films on the substrate with fine structures, LD fabrication process, device evaluation, and device simulation

Nitride Semiconductors: MOVPE growth, N-polar growth, Evaluation of semiconductor materials, Fabrication of light-emitting devices, solar cells, and high-power transistors

New Industry Creation Hatchery Center
MATSUOKA Takashi, Professor Doctor of Engineering