"C" Keywords - 127 Result(s)

 C

[Chemical species]

Development of next-generation sterilization method by a plasma flow at atmospheric pressure

NEXT
PREV
特徴・独自性
  • Plasma sterilization has been developed as an alternative sterilization method due to its chemical activity, operation at low temperature and atmospheric pressure, low power consumption, low cost and safety. We have studied a mechanism of chemical species generation and transport in a plasma flow and, the sterilization efficacy and mechanism for several plasma sources at atmospheric pressure, such as a microwave plasma flow, a dielectric barrier discharge in a tube and a water vapor plasma flow. We already clarified that the damages of outer membrane and destructions of the cytoplasmic membrane of Escherichia coli by exposure to the microwave plasma flow. Fig. 1 shows the effect of plasma exposure on the E. coli. When the E. coli was exposed to the plasma, the height of the E. coli decreased and the potassium leakage of cytoplasmic material increased. For sterilization in a tube, we also clarified that an induced flow in the narrow tube by DBD transports chemical species and sterilize the whole inside surface of a tube as shown in Fig. 2. We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.
実用化イメージ

Researchers

Institute of Fluid Science

Takehiko Sato

[chemical thermodynamics]

High-Temperature Processes and Measurements of Materials

NEXT
PREV
特徴・独自性
  • Fukuyama laboratory studies novel material processing based on chemical thermodynamics with high-temperature thermophysical property measurements. As examples, we are developing new crystal growth processes to bring a breakthrough in nitride-semiconductor devices, which are promising materials for next-generation optical devices applied in environmental, medical, bio and information technologies fields. Database of thermophysical properties of materials is needed for modeling heat and mass transports in materials processes.
実用化イメージ

A new thermophysical property measurement system is currently under development, which enables accurate measurements of heat capacity, thermal conductivity, emissivity, density and surface tension of high-temperature melts, utilizing electromagnetic levitation in a dc magnetic field.

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Hiroyuki Fukuyama

[chemotherapy]

Lymph node metastasis prediction and treatment evaluation system

NEXT
PREV
特徴・独自性
  • 1. pressure sensor (needle, optical fiber, etc.) can be inserted into the lymph node to evaluate the risk of lymph node metastasis and treatment.
  • 2. domestic patent obtained
実用化イメージ

Joint research with a medical device manufacturer to develop a diagnosis and treatment system for lymph node metastasis

Researchers

Graduate School of Biomedical Engineering

Tetsuya Kodama

[chronic kidney disease]

Development of anti-fibrotic therapies with a cell line from myofibroblasts of fibrotic kidneys

NEXT
PREV
特徴・独自性
  • There are serious unmet medical needs in kidney diseases. Since fibrosis is a common terminal pathology of various kidney diseases and closely related to renal failure, anti-fibrotic therapies are plausible strategies for kidney diseases. Kidney fibrosis progresses with the emergence of myofibroblasts which produce extracellular matrix. We demonstrated that myofibroblasts originate from renal interstitial fibroblasts, which produce the erythroid growth factor erythropoietin, and that the transformation is reversible. To elucidate mechanisms of kidney fibrosis, we have established a cell line derived from myofibroblasts of mouse kidneys. It has been demonstrated that epigenetic interventions restore the cells (Replic cells) to their original fibroblastic features.
実用化イメージ

Replic cells provide useful and precise strategies to identify anti-fibrotic drugs.

Researchers

New Industry Creation Hatchery Center

Norio Suzuki

[circular economy]

Developing plastic waste sorter using Terahertz waves and social implementation of sustainable recycling technology

NEXT
PREV
概要

This research utilizes the characteristics of terahertz waves, used in next-generation communications and autonomous driving, to identify the materials of plastic waste. It improves existing recycling technologies and can be applied to evaluate the quality of recycled plastics, ensuring stable production of high-quality recycled plastics. It enables easy development of devices to solve various issues in containers and packaging and automobile recycling, contributing to the realization of decarbonization and a circular economy.

従来技術との比較

Conventional plastic waste identification and sorting technologies use specific gravity sorting or near-infrared devices. Particularly, near-infrared sorting technology has accumulated an enormous amount of data and serves as the primary sorting technology in plastic recycling plants. However, near-infrared devices struggle with identifying black plastics, additives, and degradation. This technology uses terahertz waves to measure and evaluate transmission and absorption characteristics, allowing for identification of black plastics, additives, and degradation.

特徴・独自性
  • In recent years, there has been increasing global attention on plastic waste issues, such as marine pollution from drifting garbage and microplastics, the overseas export of plastic waste resources, and the increase in disposable containers like plastic bags and straws, especially due to the impact of COVID-19. There is growing demand for advanced identification and recycling of plastic waste materials, especially in the context of achieving the Sustainable Development Goals (SDGs) and realizing a circular economy.
  • The research group from Tohoku University, Shibaura Institute of Technology, and Shizuoka University has conducted research on the commercialization of advanced sorting devices for plastic packaging waste. We have successfully identified mixed plastics containing black plastics, additives, and flame retardants, which were difficult to identify with existing devices, by utilizing the characteristics of terahertz waves. We have also confirmed the ability of terahertz waves in assessing degradation caused by UV or long-term use. Furthermore, the method has been shown to be effective for distinguishing bioplastics, which is expected to see increasing demand in the future, in addition to plastic waste from container packaging, automobiles, and home appliances.
  • These identification technologies can be applied to properly sort plastic waste generated by the “The Plastic Resource Circulation Act,” enacted in 2022, contributing greatly to securing high-quality recycled resources through plastic waste resource recycling.
  • Our research group conducts interdisciplinary research with experts in various fields: social engineering, resource circulation (Professor Jeongsoo YU), optical engineering (Professor Tadao TANABE of Shibaura Institute of Technology and Professor Tetsuo SASAKI of Shizuoka University), information science and big data analysis (Associate Professor Kazuaki OKUBO), data collection and analysis, international cooperation (Specially Appointed Lecturer Gaku MANAGO), social experiments, and behavioral economics (Assistant Professor Xiaoyue LIU). We address the needs from social, economic, and environmental issues both domestically and internationally, working from diverse perspectives to solve challenges and contribute to the creation of a sustainable society. Collaboration and networking with private companies, government agencies, research institutions, and civic organizations are also expected.
実用化イメージ

This technology can be applied to the development of plastic waste identification and sorting devices from processes such as containers and packaging recycling, automobile recycling, and home appliance recycling, as well as the production and quality evaluation of recycled plastics.

Researchers

Graduate School of International Cultural Studies Graduate School of Environmental Studies Green Goal's Initiative, Tohoku University

Jeongsoo Yu

[Clinical development]

Development of PHD-Targeted Drug for Ischemic Injury

NEXT
PREV
特徴・独自性
  • All the living organisms generate energy from molecular oxygen to maintain their own lives. Once the concentration of oxygen falls down, life activity gets severely hampered and it could sometimes cause death. Typical examples that are related to local hypoxia are ischemic heart disease, stroke and kidney disease.
  • We focus on the function of prolyl hydroxylase (PHD) as a sensor to detect the hypoxia, and we are developing drugs to treat ischemic injury by controlling hypoxia.
実用化イメージ

Currently, we have several compounds that inhibit the PHD. We want to commercialize in conjunction with pharmaceutical companies in Japan and overseas, advancing our non-clinical studies for clinical development.

Researchers

Graduate School of Medicine

Toshio Miyata

[Cloud Storage]

Blockchain-based Approachs for High Secure P2P-type Decentralized Cloud Storage and Practical Smart Contract for Trading Personal Data

NEXT
PREV
特徴・独自性
  • We are developing a decentralized P2P (Peer to Peer) type cloud storage that realizes innovative level of security by use of surplus storages of P2P nodes with the Blockchain technology. The developed storage can avoid the risk of large-scale information leakage of stored data due to the weakness of the central server. By using our cryptographic currency for rewards and usage fees in the storage, fair storage usage of all users can also be achieved.
  • In addition, We are developing a unique smart contract technology for practical decentralized trading of personal data among an unspecified number of users.
実用化イメージ

We hope to conduct collaborative researches with companies developing Bitcoin 2.0 type application (e.g. smart contract, Fintech) based on the Blockchain technology, the Internet of Things (IoT) technology, Medical Database for practical use.

Researchers

Center for Data-driven Science and Artificial Intelligence

Masao Sakai

[CMOS]

Novel-Concept Silicon Integrated Circuits Derived from the 3-Dimensional Device, Circuit and Architecture

NEXT
PREV
特徴・独自性
  • In recent year, facing the age of nanoscale engineering, the new technologies of device, circuit and architecture supported by novel physical guidance principles are highly expected, just as the similar situation as the predawn of semiconductor technology when Bardeen and Shockley discovered the secret of transistors. Therefore, in our research approach, the architectures, circuits, devices and CAD design tools for nanoscale LSI are systematically investigated in the following three main research subjects.
  • 1. Study on nanoscale device and circuit
  • Aiming at the nanoscale silicon semiconductor integrated circuit, we are mainly working on the following directions for new devices and circuits:
  • ①Analysis for novel physical phenomenon based on nanostructural effects
  • ②Device and circuit technology with new operating principle
  • ③Restraint technology for increasing variability of device characteristics
  • ④Architecture and circuit technology for robust information processing
  • 2. Study on the 3-dimention-structual device and circuit
  • The elementary element of recent LSI with planar-structural devices is coming close to the physical limitation of scaling. In order to break the limit and sustain the evolution of future LSI performance, we have started the research on the novel 3-dimension-structural devices and circuits.
  • 3. research on wireless integrated circuit (IC) based on information transmission
  • The ultracompact lightweight wireless IC is one of essential technologies for realizing the ubiquitous society which has the network available in anywhere, at anytime and from any surrounding items. For example, the IC tags for receiving information with reading function are getting close to the practical applications. In our laboratory, aiming at the automatic operating wireless IC with embedded power supply, we are systematically working on the following directions:
  • ①The electrical power generation and storage devices
  • ②Devices and circuits with Ultralow power consumption
  • ③Sensing devices
  • For all above subjects, We hope to conduct collaborative researches with companies interested in our research.
実用化イメージ

Researchers

Graduate School of Engineering

Tetsuo Endoh

[CMOS device]

Development of Advanced Device and Process Technologies and New Image Sensors

NEXT
PREV
特徴・独自性
  • Toward the ultimate performances of image sensors, advanced research activities are being conducted that cover a wide range of technology fields from cleanroom infrastructure, materials, process equipment, process, device, circuit, assembly, signal processing, measurement/evaluation and reliability. Following technologies have been successfully commercialized:
  • A fast and accurate measurement technology of electrical characteristics for over 1 million transistors
  • A wide dynamic range CMOS image sensor technology capturing images over five decade brightness ranges
  • An ultra-fast CMOS image sensor technology with 10 million frames/sec
実用化イメージ

Followings are available for industry collaborators:
A. 200mm-diameter-wafer silicon device fabrication utilizing the ultra-clean facility including wafer mutual fabrication processing between device manufacturers.
B. Process technology development and various kinds of analyses.
C. Development of new image sensors.

Researchers

New Industry Creation Hatchery Center

Shigetoshi Sugawa

[CNFs]

newExtraction of cellulose nanofibers (CNFs) from sea pineapples' shells and application for energy materials

NEXT
PREV
概要

The sea pineapple is the only animal that produces cellulose, and its shells, excluding the edible parts, are treated as industrial waste. By removing proteins and other components from the sea squirt shells and fibrillating them, cellulose nanofibers (CNFs) can be extracted. We have focused on the fact that CNFs derived from sea squirt shells have a higher degree of crystallinity and greater mechanical strength compared to those from wood, and we are exploring various applications of this material. Furthermore, since the material transforms into high-quality carbon upon calcination, we successfully developed "nano-blood carbon catalysts" by mixing it with dried blood powder and calcining the mixture. These catalysts are being applied in fuel cells, water electrolysis, and metal-air batteries.

従来技術との比較

CNFs derived from sea pineapple's shells have a higher degree of crystallinity compared to those from wood and provide longer fibers, resulting in high strength. When calcined, they transform into high-performance carbon.

特徴・独自性
  • We are the only research laboratory that has consistently developed a process for the simple and large-scale purification of CNFs derived from sea pineapple's shells, along with the creation of film materials that leverage their unique properties (mechanical, engineering, surface science, electrical, and thermal characteristics), as well as the development of carbonized materials.
実用化イメージ

We offer materials derived from sea pineapples' shell CNFs, as well as their carbonized products and catalysts. Please feel free to consult us regarding material supply, carbonization processes, or the utilization of catalysts.

Researchers

Advanced Institute for Materials Research

Hiroshi Yabu

[Co alloy]

Precipitation Hardened Co-based Alloy

NEXT
PREV
特徴・独自性
  • The high-temperature strength in Co-based alloys is inferior to that in Ni-based superalloys due to no available ’ phase for strengthening Co-based alloys. We have found a new intermetallic compound Co3(Al,W) ’ phase, and /’ Co-Al-W-based wrought and cast alloys show excellent high-temperature strength. The /’ Ir-Al-W-based alloys are also available for high-temperature uses at over 1100 °C. The Co-based alloys also have good wear resistance. For example, friction stir welding (FSW) of high-softening-temperature materials such as steels and titanium alloys is possible using a Co-based alloy tool. We hope to conduct collaborative research with willing company for a practical application of the Co- or Ir-based alloys for high-temperature uses including FSW applications.
実用化イメージ

Researchers

Graduate School of Engineering

Toshihiro Omori

[CO[v2] free]

Low temperature reforming of hydrocarbons using metal oxide nanoparticles synthesized by supercritical method

NEXT
PREV
特徴・独自性
  • Our research group has succeeded in synthesizing various metal oxide nanoparticles with controlled size and exposure crystal planes by using organic modifiers under supercritical water conditions. The oxygen storage/release capacity of those materials in the low-temperature region is very high, and the reforming reaction of oxidative hydrocarbon proceeds at a significant rate. Besides, by combining the supercritical CO2 drying method, we have succeeded in forming a complex in which oxide nanoparticles are dispersed at a high concentration on the surface of the porous material, realizing both high oxygen storage/release capability and stability.
実用化イメージ

Low-temperature reforming reaction of biomass wastes, heavy oils, and methane. In the future, it is expected to be a technology that will lead to the construction of a low-carbon society, including CO2-free complete recycling of waste plastics.

Researchers

Advanced Institute for Materials Research

Tadafumi Ajiri

[CO2]

Supercritical Fluid Technology Based on its Unique Properties

NEXT
PREV
特徴・独自性
  • We have investigated various physical properties of supercritical fluids and their mixture. The properties studied are density, viscosity, phase equilibria, solubility, etc. under high temperatures and pressures. Using these suprecritical fluid features, we have proposed their application technologies; such as extraction of natural resources, cleaning, drying, catalyst preparation, polymer processing, polymer recycling, biomass conversion and controlled delivery. The methodologies used are experiments, simulation and theretical ones.
実用化イメージ

Cleaning Technology: precision machinery component, optical component, etc.
Extraction of Natural Resources: food, supplements, aroma.
Polymer Processing: functional resin, electronic component, etc.

Researchers

New Industry Creation Hatchery Center

Hiroshi Inomata

[CO2 conversion electrocatalysts]

Advanced Nanotechnology for Critical metal free secondary battery

NEXT
PREV
特徴・独自性
  • Monoatomic layered materials of Graphene, Transition metal sulfide nanosheet, nanocrystalline active materials, nanoparticles and nanoporous materials are investigated for realizing high capacity, high power, high safety and low cost energy storage devices as a post- Lithium ion battery. Advanced chemistry of functional materials and device processes for All solid state battery, Magnesium battery, fuel cells, supercapacitor and wearable batteries are investigated.
実用化イメージ

Academia – Industry collaboration with manufacturing companies of functional materials, batteries, and also smart grid, renewable energy, electrical power companies are encouraged for developments of advanced energy materials and post-Lithium ion battery.

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Itaru Homma

[CO2 reduction]

The Construction of a Decentralized Energy Production System Using Small Methane Fermentation Systems That Utilize Exhaust Heat or Hot Springs and a Local Circulation System

NEXT
PREV
特徴・独自性
  • In this project, we reduce the costs of energy production via anaerobic digestion by utilizing exhaust heat from a factory, which resulted in a positive energy balance, although the methane fermentation system tested was on a small scale.
  • Using small-scale methane fermentation with a positive energy balance, the initial investment is small, enabling a company to invest in, and install, such a system. This would decentralize energy production within an area. Moreover, this system not only produces energy, but is a basis for resource recycling.
実用化イメージ

Food factory, hotel, restaurant, where food garbage or organic waste was produced much.

Researchers

Graduate School of Agricultural Science

Chika Tada

[Coating]

Molecular Dynamics Analysis of Coating and Surface Modification

特徴・独自性
  • Molecular-scale mechanism of solid-liquid affinity, wettability, thermal boundary resistance and molecular deposition are analyzed by molecular dynamics simulations toward its control. With a background of heat and mass transport and interfacial thermodynamics, transport phenomena of various scales ranging from spin coating of photoresist to SAM (self-assembled monolayer) and hydrophobic/hydrophilic treatment by attaching some molecular basis are studied. Futhermore, the molecular-scale mechanisms which determine thermophysical properties and the molecular structure that realizes desired thermophysical properties are studied. We can conduct effective collaboration and provide academic consultations to companies interested in our research.
実用化イメージ

Researchers

Tohoku Medical Megabank Organization

Taku Obara

Innovative Preparing and Thick Coating Technique without Heat Affected Zone and Phase Transformation

NEXT
PREV
特徴・独自性
  • The cold spray (CS) technique is known as a new technique not only for coating but also for thick depositions. It has many advantages, i.e. dense coating, high deposition rate, low oxidation, and no phase transformation. We have been carrying out establishment of innovative preparing and coating techniques using the CS, and maintenance of reliability and safety of the cold sprayed repairing parts and coatings. Moreover, in order to evaluate the compatibility between a substrate material and particles based on an adhesion mechanism and scientific basis, various adhesion conditions are examined a micro / nano-structure observation and a molecular simulation.
実用化イメージ

Our targets were mainly hot section parts of thermal power plants and reactor piping and tubes etc. Recently, it is possible to make a ceramic coating. Therefore, we accelerate the evolution of the other fields including the creation of the functionality materials in near future.

Researchers

Graduate School of Engineering

Kazuhiro Ogawa

[CoCr alloy]

Novel CoCr-based superelastic metallic biomaterial with low Young's modulus

NEXT
PREV
特徴・独自性
  • General metallic biomaterials, such as stainless steels and conventional CoCr alloys, show a high Young's modulus ten times higher than that of human bones. This is an unfavored feature because it causes the so-called "stress shielding effect" when they are used as implants. β-type Ti alloys have a relatively lower Young's modulus, but they come with a compromise of low wear resistance. The current novel CoCr-based alloys are a breakthrough; they exhibit both a low Young's modulus similar to human bones and a high wear and corrosion resistance. Moreover, they exhibit superelasticity with a huge recoverable strain over 17%, also showing promise as shape memory alloys.
実用化イメージ

It is the first time that a low Young's modulus, a high corrosion and wear resistance, and a superior superelastic behavior are simultaneously obtained in a single material. The current novel CoCr-based alloys are promising for biomedical applications such as total hip or knee joint replacements, bone plates, spinal fixation devices, and vascular stents.

Researchers

Graduate School of Engineering

Xiao Xu

[coercivity]

Magnetic Materials (Permanent Magnets, High Frequency Materials, Microwave Absorbers)

NEXT
PREV
特徴・独自性
  • The objectives of my researches are the development of high performance magnets and improvement of their magnetic properties. I have already developed following high performance magnets, such as Nd-Fe-B magnets using didymium, Sm-Fe-N high coercive powders prepared by HDDR and Fe-Cr-Co magnets. Recently, I have studied about the reduction of Dy content in Nd-Fe-B magnets for the use of HEV and have succeeded to develop high coercive Dy-free Nd-Fe-B sintered magnets by decreasing the grain size. I have also developed new kinds of microwave absorbers for the use in the frequencies of GHz range using permanent magnetic materials or nanoparticles.
実用化イメージ

High performance magnetic materials can be used in many applications in automobile, home electronics, IT and medical industries. We hope to conduct collaborative researches with companies producing magnetic materials for the use in these applications, which aims to improve magnetic properties or to develop new magnetic materials.

Researchers

Graduate School of Engineering

Satoshi Sugimoto

[Cognitive Intervention]

Resarch and development for maintaining and improving brain and mental health

特徴・独自性
  • The Smart Aging International Research Center (SAIRC) was founded on 1 October 2009. This Center proposes the creation of a new field to produce well-rounded personnel who have gained “totally comprehensive intelligence” from their experience, in order to cope with various problems associated with the diverse and complex super-aging society. To this end, the Center will promote interdisciplinary cooperative research, international collaborative research projects, and research collaborations with industry, as well as disseminate and exchange information by holding international conferences and symposia.  The SAIRC is designed to develop an approach for maintaining and improving brain and mental health in a diverse and complex society from the standpoints of brain science, with the aim of maintaining and improving brain functions; cognitive neuroscience and psychology, with the aim of maintaining a healthy and tranquil state of mind at each aging stage; and philosophy, phenomenology and ethics that provide a radical reconsideration of the concept of the “mind.” We welcome collaborative researches with companies, and academic consultations.
実用化イメージ

Researchers

Institute of Development, Aging and Cancer

Ryuta Kawashima