"C" Keywords - 121 Result(s)

 C

[Crevice corrosion]

Chemical imaging devices which operate in severe environments

NEXT
PREV
特徴・独自性
  • We developed both pH and Cl- imaging plates, which can visualize the pH and Cl- concentration on metal surfaces in acidic environments. The pH range is from 3.0 to 0.5, and Cl- concentration up to 4 M can be measured. Fluorescent dyes are successively used for pH and Cl- imaging in the field of biology, but their sensitivity tends to be insufficient in acidic and/or highly concentrated chloride solutions. A glass plate with a sol-gel sensing layer, which contains a pH indicator or a Cl- sensitive florescent dye was fabricated and validated using the solutions with various pH values and Cl- concentrations. Changes in the pH and Cl- distribution on stainless surface in an acidic environment were measured quantitatively.
実用化イメージ

The newly developed imaging plates can be used to investigate the mechanism of various chemical reactions, such as corrosion, which occurs in an acidic environment. Micro-flow imaging using our sensing technique will be a promising approach to understand the catalytic chemistry of metal surfaces.
強調

Researchers

Graduate School of Engineering

Izumi Muto

[Critical metal free secondary battery]

Advanced Nanotechnology for Critical metal free secondary battery

NEXT
PREV
特徴・独自性
  • Monoatomic layered materials of Graphene, Transition metal sulfide nanosheet, nanocrystalline active materials, nanoparticles and nanoporous materials are investigated for realizing high capacity, high power, high safety and low cost energy storage devices as a post- Lithium ion battery. Advanced chemistry of functional materials and device processes for All solid state battery, Magnesium battery, fuel cells, supercapacitor and wearable batteries are investigated.
実用化イメージ

Academia – Industry collaboration with manufacturing companies of functional materials, batteries, and also smart grid, renewable energy, electrical power companies are encouraged for developments of advanced energy materials and post-Lithium ion battery.

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Itaru Homma

[crops]

Improvement of Seed Production by Using Reproductive Trait in Crops, Especially, Rice and Cruciferous Crops

NEXT
PREV
概要

The recent spate of extreme weather events is threatening to reduce crop seed and fruit production. We have identified a catalog of genes that respond under low and high temperature stress, and will construct a system that enables production under temperature stress through genome editing and other methods.

従来技術との比較

In addition to conventionally used genetic recombination methods, genome editing technology has made it possible to modify genes that can be used for practical purposes.

特徴・独自性
  • Crops are important for food, environment recovery, energy production, and amenity activity for human being. For improvement of crop seed production, the breeding of crops having environmental stress, is important. Especially the developmental stage from pollination to fertilization is quite weak for these environmental stresses. Thus, by breeding of reproductive trait, we will establish the high productivity and quality of crop seeds. From our research, we found several stress-tolerant genes. We already started the research by both basic and applied level.
実用化イメージ

For application, we evaluated by taking prize for application in 2001. And our basic data has been published in international Journal, "Nature" and "Science". If anyone is interested in these genes, we hope to conduct to collaborative research for establishing the useful breeding lines.

Researchers

Graduate School of Life Sciences

Masao Watanabe

[Cross-Border Pollution]

A Study on the Proper Waste Management and Urban Mining Project in Asian Countries; International Resources Recycling and Cross-Border Pollution

NEXT
PREV
特徴・独自性
  • The objective of this research is to maximize international resource recycling efficiency through a feasibility assessment of urban mining project in East Asia. It is not only focused on valuable materials but also on less valuable materials like waste plastics. The merit of this approach is its consideration of social, economic and environmental systems in each country.
実用化イメージ

This research is envisioned to support the establishment of resource recycling systems, developing new business models, people-to-people exchange and information sharing.

Researchers

Graduate School of International Cultural Studies

Jeongsoo Yu

[cross-linking]

Development of Intelligent Molecules for the Regulation of Gene Expression in Cells

NEXT
PREV
特徴・独自性
  • The artificial control of gene expression by synthetic oligodeoxynucleotides (ODNs) has been the subject of considerable interest. In particular, ODNs conjugated with a cross-linking agent have been expected to enhance the inhibitory effect. Recently, microRNAs (miRNA) endogenously expressed small regulatory non-coding RNAs, are recognized as playing a critical role in regulating gene expression and the great concerns have been raised about efficient antisense oligonucleotides against miRNAs. We have already demonstrated that ODNs bearing a 2-amino-6-vinylpurine (2-AVP) derivative exhibited efficient interstrand cross-linking to cytosine selectively. The unique structural features of AVP are to possess both the hydrogen bond donor-acceptor sites as recognition sites and the vinyl group as a reactive moiety in a single molecule. Recently, we have developed of the novel cross-linking agents, which are designed based on the unique structure of AVP. These derivatives can react to thymine at the complementary site with highly selective and efficient under neutral conditions. We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.
実用化イメージ

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Fumi Nagatsugi

[cruciferous plants]

Improvement of Seed Production by Using Reproductive Trait in Crops, Especially, Rice and Cruciferous Crops

NEXT
PREV
概要

The recent spate of extreme weather events is threatening to reduce crop seed and fruit production. We have identified a catalog of genes that respond under low and high temperature stress, and will construct a system that enables production under temperature stress through genome editing and other methods.

従来技術との比較

In addition to conventionally used genetic recombination methods, genome editing technology has made it possible to modify genes that can be used for practical purposes.

特徴・独自性
  • Crops are important for food, environment recovery, energy production, and amenity activity for human being. For improvement of crop seed production, the breeding of crops having environmental stress, is important. Especially the developmental stage from pollination to fertilization is quite weak for these environmental stresses. Thus, by breeding of reproductive trait, we will establish the high productivity and quality of crop seeds. From our research, we found several stress-tolerant genes. We already started the research by both basic and applied level.
実用化イメージ

For application, we evaluated by taking prize for application in 2001. And our basic data has been published in international Journal, "Nature" and "Science". If anyone is interested in these genes, we hope to conduct to collaborative research for establishing the useful breeding lines.

Researchers

Graduate School of Life Sciences

Masao Watanabe

[Cryogenics]

Development of Sustainable Integrated Multiphase Energy System

NEXT
PREV
特徴・独自性
  • Our laboratory is focusing in the development of innovative multiphase fluid dynamic methods based on the multiscale integration of massively parallel supercomputing and advanced measurements, and research related to creation of environmentally conscious energy systems. Furthermore, we promote basic research for the creation of risk management science and associated new multiphase flow system directly linked to sustainable energy represented by a high-density hydrogen storage technology.
実用化イメージ

P2P Hydrogen supply chain, Elastohydrodynamic lubrication, Supercomputing of Laser melting and sputter particle formation, High pressure diecast computing / Automotive industry, Additive manufacturing

Researchers

Institute of Fluid Science

Jun Ishimoto

[Crypto-currency]

Blockchain-based Approachs for High Secure P2P-type Decentralized Cloud Storage and Practical Smart Contract for Trading Personal Data

NEXT
PREV
特徴・独自性
  • We are developing a decentralized P2P (Peer to Peer) type cloud storage that realizes innovative level of security by use of surplus storages of P2P nodes with the Blockchain technology. The developed storage can avoid the risk of large-scale information leakage of stored data due to the weakness of the central server. By using our cryptographic currency for rewards and usage fees in the storage, fair storage usage of all users can also be achieved.
  • In addition, We are developing a unique smart contract technology for practical decentralized trading of personal data among an unspecified number of users.
実用化イメージ

We hope to conduct collaborative researches with companies developing Bitcoin 2.0 type application (e.g. smart contract, Fintech) based on the Blockchain technology, the Internet of Things (IoT) technology, Medical Database for practical use.

Researchers

Center for Data-driven Science and Artificial Intelligence

Masao Sakai

[Cryptography]

Visual Computing with Secure ICT in the Big Data Era

NEXT
PREV
特徴・独自性
  • Our study focuses on sensing, processing, recognition, understanding, and analysis of enormous visual data collected in real-world environments. We have invented a set of advanced techniques of sub-pixel image analysis using phase-based image matching. Potential applications include personal recognition using various biometric traits (e.g., face, fingerprint, palm print, finger knuckle print, iris, and medical radiographs), machine vision, multi-view 3D reconstruction, image database search, and medical image computing. We are also studying fundamental techniques for building secure ICT infrastructure for the big data era; our research interests include tamper-resistant cryptographic processing and biometrics-based secure remote authentication.
実用化イメージ

We can provide collaboration and information exchange services for industries and other research organizations in the fields of image processing, computer vision, information security, biometrics, LSI design, and embedded system technologies. Many researchers and engineers from various companies, universities, and research institutions have visited our laboratory regardless of their technology fields. Our staff at the Intelligent Information System (IIS) Research Center will welcome potential collaborators: info@iisrc.ecei.tohoku.ac.jp

Researchers

Administrative Staff

Takafumi Aoki

Cyber Physical Systems Security and Its Applications

NEXT
PREV
特徴・独自性
  • Our study focuses on information security technologies for the next-generation ICT society fusing real-world and cyber-space computing. We are now conducting the research and development of ultra-high-speed, ultra-low power LSI computing to perform security functions such as encryption and secure computing, secure implementation technologies to protect systems from various physical attacks (attacks carried out by physical access to the system), and security optimization technologies tailored to the system usage environment and application area.
実用化イメージ

We can provide collaboration and information exchange services in the fields of information security. In particular, we have experiences of domestic/international collaborative researches on embedded security with some companies, universities, and governmental institutes.

Researchers

Research Institute of Electrical Communication

Naofumi Homma

[crystal growth]

A novel crystal growth via controlling an energy relationship between crystal and melt with applying an electric field

NEXT
PREV
特徴・独自性
  • This lab is concerned with the novel approach mainly for the growth from melt by studying the relationship between the interface dynamics during growth and properties of grown crystals. Special interests lie in the growth of new crystals via the imposition of an interface-electric field. Nano-scaled control of crystal growth is executed in an electric double layer of ~nm thickness that is induced by applying an external electric field on the growth interface. Some of our growth results brought by applying an electric field are;
  • 1. Growth of Langasite-type crystals for the pressure sensor at high temperature by manipulating the energy relationship between crystal and melt.
  • 2. Easy nucleation of protein crystals that are normally hard to crystallize.
  • 3. Formation of Si crystals with desired structure by manipulating the interface instability of Si.
  • Crystals developed this way will widen an opportunity to collaborate with industries in the field of the piezoelectric, magnetic, optic and other fields related to the highly-networked information society.
実用化イメージ

Researchers

New Industry Creation Hatchery Center

Satoshi Uda

Development of Compound Semiconductor Radiation Detectors

NEXT
PREV
特徴・独自性
  • The main research subject of our group is developing material purification methods, crystal growth methods and detector fabrication technologies for compound semiconductor radiation detectors. Our group intensely studies a compound semiconductor, thallium bromide (TlBr), for fabrication of gamma-ray detectors for the advanced radiation applications. The attractive physical properties of TlBr lie in its high atomic number (Tl: 81, Br: 35), high density (7.56 g/cm3) and wide bandgap (2.68 eV). Due to the high atomic number and high density, TlBr exhibits high photon stopping power. The wide bandgap of TlBr permits the device low-noise operation at and above room temperatures.
実用化イメージ

Our group focuses on development of compound semiconductor radiation detectors for advanced radiation applications including ultra-high resolution PET systems, ultra-high resolution SPECT systems, photon counting CT systems and Compton cameras. We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.

Researchers

Graduate School of Engineering

Keitaro Hitomi

High-Temperature Processes and Measurements of Materials

NEXT
PREV
特徴・独自性
  • Fukuyama laboratory studies novel material processing based on chemical thermodynamics with high-temperature thermophysical property measurements. As examples, we are developing new crystal growth processes to bring a breakthrough in nitride-semiconductor devices, which are promising materials for next-generation optical devices applied in environmental, medical, bio and information technologies fields. Database of thermophysical properties of materials is needed for modeling heat and mass transports in materials processes.
実用化イメージ

A new thermophysical property measurement system is currently under development, which enables accurate measurements of heat capacity, thermal conductivity, emissivity, density and surface tension of high-temperature melts, utilizing electromagnetic levitation in a dc magnetic field.

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Hiroyuki Fukuyama

[crystal structure]

Development of Potential Thermoelectric Materials

NEXT
PREV
特徴・独自性
  • We have been exploring novel thermoelectric materials. Functions of a solid substance primarily depend on the electronic structure, directly derived from its crystal structure. Through high-quality structure analyses using neutron and X-ray diffraction, combined with first-principles calculations, we have been fabricating materials with desired functions. To date, more than 40 novel materials have been discovered based on our guiding principles.
実用化イメージ

For developing future device technologies, challenges on thin-film thermionic multilayers and organic thermoelectric materials are currently underway.

Researchers

Graduate School of Engineering

Yuzuru Miyazaki

[crystallization]

Study on Phase Change Materials for PCRAM Application

NEXT
PREV
特徴・独自性
  • Phase change random access memory (PCRAM) has attracted attention as next-generation non-volatile memories. A conventional PCM is Ge-Sb-Te which shows a fast crystallization speed and an excellent reversibility of phase transition. However, Ge-Sb-Te has a low crystallization temperature of about 150 ºC and a high melting temperature of over 600 ºC , which limits data retention and causes high power consumption, respectively.
  • We have developed a new phase change materials with high crystallization temperature and low melting point such as Ge-Cu-Te etc, which have high potential as PCRAM materials with high thermal stability and low power consumption (Fig.1,2).
実用化イメージ

Our materials are developed for PCRAM, DVD recording materials etc. We hope the collaboration research with companies which are interested in our developed phase change materials.

Researchers

Graduate School of Engineering

Yuji Suto

[CT]

X-Ray Phase Imaging for High-Sensitive Non-Destructive Testing

NEXT
PREV
特徴・独自性
  • Conventional X-ray imaging methods that rely on X-ray attenuation cannot generate clear contrast in the observation of low-density materials such as polymers consisting of low-Z elements. However, the sensitivity to the materials can be improved drastically by X-ray phase imaging that detects X-ray refraction caused by the materials. X-ray Talbot or Talbot-Lau interferometry consisting of X-ray transmission gratings is now constructed in laboratories for X-ray phase imaging. X-ray phase tomography is also realized, enabling high-sensitive three-dimensional observation.
  • X-ray phase imaging can be utilized for X-ray non-destructive testing of industrial products and baggage that cannot be checked conventionally.
実用化イメージ

We aim at appending a phase-contrast mode to micro-CT apparatuses and developing screening apparatuses in production lines.

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Atsushi Momose

High-speed X-ray phase tomography with a millisecond-order temporal resolution

NEXT
PREV
特徴・独自性
  • We successfully realized millisecond-order X-ray phase tomography using a fringe-scanning method in grating-based X-ray interferometry. We obtained phase tomograms with a measurement time of 4.43 ms using a white synchrotron X-ray beam. The use of a fringe-scanning method enables us to achieve not only a higher spatial resolution but also a higher signal-to-noise ratio than that attained by the Fourier transform method. In addition, our approach can be applied to realize four-dimensional or high-throughput X-ray tomography for samples that can be rotated at a high speed.
実用化イメージ

Researchers

International Center for Synchrotron Radiation Innovation Smart

Wataru Yashiro

[Current-mode logic]

High-speed and low-power asynchronous Network-on-Chip system based multiple-valued current-mode logic

NEXT
PREV
特徴・独自性
  • Global intra-chip interconnection complexity not only limits the clock frequency, but causes clock-skew problems in synchronous system. Asynchronous control-based circuit design, where timing is managed locally, is one of the possible approaches to solve the above serious interconnection problem because the asynchronous design has many features which are low power dissipation, high speed and robustness. However, communication-steps overhead caused by handshaking much would generally affect the cycle time.
  • In our approach, a high-speed asynchronous data-transfer scheme is proposed based on multiple-valued encoding and current-mode circuits. The multiple-valued encoding enables to improve communication protocol essentially. Moreover, the current-mode circuits which has high-driving capability makes it possible to perform high-speed intra- and inter-chip network. By using this method, we expect that we can conduct effective collaborative research in high-speed and low-power communication LSIs such as a many-core LSI and a multi-module NoC.
実用化イメージ

Researchers

Research Institute of Electrical Communication

Takahiro Hanyu

[Cutting]

Joule Heat Welding of Ultrathin Metallic Wires and its Application for Producing Functionality

NEXT
PREV
特徴・独自性
  • For producing a new functionality from metallic micro and nano matarials, the welding and cutting technologies for small scale materials utilizing Joule heat has been developed (Fig. 1). A constant direct current is supplied to the system, where the free ends of two metallic wires are contacted, and the ends are successfully welded together in self-completed manner. This technology is also useful for manipulating a small scale materials.
実用化イメージ

Joule heat welding technology enables us to produce the functional elements on the electrode chips, e.g., a free-standing micro-ring and very-thin thermoelectric element (Fig. 2). Moreover, we have developed the technique for characterizing the physical properties of small scale materials (Fig. 3). We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.

Researchers

Graduate School of Engineering Department of Finemechanics

TOHMYOH Hironori

[cyclodepsipeptides]

Synthesis of Biologically Active Cyclodepsipeptide Natural Products

NEXT
PREV
特徴・独自性
  • Cyclodepsipeptide natural products include optically active hydroxy acids as well as various unnatural amino acids and exhibit a variety of biological activity depending on the peptide sequence, chirality, and selection of the hydroxy acids. Structure-activity relationships of a synthetic library of natural products could give us significant information of not only biologically important moieties but also intact positions in the biologically active small molecules. On the basis of the former information, more potent compounds and/or peptide mimetics can be designed. The latter information can also be important for making a molecular probe that is used for exploration of a target molecule.
実用化イメージ

We study for combinatorial synthesis of natural product analogues using solid-phase.

Researchers

Graduate School of Pharmaceutical Sciences

Takayuki Doi