"C" Keywords - 127 Result(s)

 C

[corrosion]

Chemical imaging devices which operate in severe environments

NEXT
PREV
特徴・独自性
  • We developed both pH and Cl- imaging plates, which can visualize the pH and Cl- concentration on metal surfaces in acidic environments. The pH range is from 3.0 to 0.5, and Cl- concentration up to 4 M can be measured. Fluorescent dyes are successively used for pH and Cl- imaging in the field of biology, but their sensitivity tends to be insufficient in acidic and/or highly concentrated chloride solutions. A glass plate with a sol-gel sensing layer, which contains a pH indicator or a Cl- sensitive florescent dye was fabricated and validated using the solutions with various pH values and Cl- concentrations. Changes in the pH and Cl- distribution on stainless surface in an acidic environment were measured quantitatively.
実用化イメージ

The newly developed imaging plates can be used to investigate the mechanism of various chemical reactions, such as corrosion, which occurs in an acidic environment. Micro-flow imaging using our sensing technique will be a promising approach to understand the catalytic chemistry of metal surfaces.
強調

Researchers

Graduate School of Engineering

Izumi Muto

Hydrogen embrittlement of high strength steels

NEXT
PREV
特徴・独自性
  • We are studying hydrogen embrittlement property of high strength steels from the aspects of both the effect of hydrogen on mechanical properties of high strength steels and hydrogen uptake behavior in corrosive environments. The topics of our study includes clarification of mechanism of hydrogen embrittlement of various steels, investigation of hydrogen entry caused by corrosion using electrochemical techniques, hydrogen visualization, proposing evaluation methods for hydrogen embrittlement property and so forth.
実用化イメージ

Collaborative research in the field of hydrogen embrittlement, for example, hydrogen embrittlement properties of high strength steels and the effects of metallographic structure and hydrogen traps, proposal of evaluation methods for hydrogen embrittlement property for some specific steel and for parts with specific shape, development of novel hydrogen visualization techniques.

Researchers

Institute for Materials Research

Eiji Akiyama

[corrosion resistance]

Novel CoCr-based superelastic metallic biomaterial with low Young's modulus

NEXT
PREV
特徴・独自性
  • General metallic biomaterials, such as stainless steels and conventional CoCr alloys, show a high Young's modulus ten times higher than that of human bones. This is an unfavored feature because it causes the so-called "stress shielding effect" when they are used as implants. β-type Ti alloys have a relatively lower Young's modulus, but they come with a compromise of low wear resistance. The current novel CoCr-based alloys are a breakthrough; they exhibit both a low Young's modulus similar to human bones and a high wear and corrosion resistance. Moreover, they exhibit superelasticity with a huge recoverable strain over 17%, also showing promise as shape memory alloys.
実用化イメージ

It is the first time that a low Young's modulus, a high corrosion and wear resistance, and a superior superelastic behavior are simultaneously obtained in a single material. The current novel CoCr-based alloys are promising for biomedical applications such as total hip or knee joint replacements, bone plates, spinal fixation devices, and vascular stents.

Researchers

Graduate School of Engineering

Xiao Xu

[cosmetics]

Colorful titanium oxide pigments without transition metals

概要

Colorful TiO2 Particle
https://www.t-technoarch.co.jp/data/anken_en/T19-849.pdf

従来技術との比較

Transition metal compounds are known to exhibit a wide variety of colors. Until now, it has been possible to color white titanium oxide by doping with transition metal ions, but it is difficult to avoid biotoxicity derived from transition metals.

特徴・独自性
  • In the present invention, titanium oxide inorganic pigments that do not contain transition metals and have various colors such as white, yellow, red, gray, green, purple, black, and skin color have been realized.
実用化イメージ

New applications of titanium oxide pigments are expected in the cosmetics field, where biotoxicity is an issue.

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Yin Shu

[Coupled computing]

Development of integrated safety management technology for hydrogen energy systems

NEXT
PREV
特徴・独自性
  • To investigate the diffusion and combustion phenomena of reactive hydrogen gas leakage when a high-pressure hydrogen tank fails due to crack propagation caused by an initial defect, we have developed a coupled analysis method that simultaneously analyzes the material structure and reactive turbulent multiphase flow through an interdisciplinary research approach. Furthermore, we have developed a new numerical prediction method related to the diffusion flow characteristics and combustion limits of hydrogen leaking due to crack propagation failure of high-pressure tank bulkheads.
実用化イメージ

We contribute to the design of hydrogen storage containers for various types of transportation equipment and the development of safety guidelines and risk management for hydrogen station configurations.

Researchers

Institute of Fluid Science

Jun Ishimoto

[creep life]

Suppression of Intergranular Degradation of Polycrystalline Materials by Grain Boundary Engineering

NEXT
PREV
特徴・独自性
  • Intergranular degradation often results in decreased lifetime, reliability and economical efficiency of polycrystalline materials. In spite of persistent efforts to prevent such degradation, its complete suppression has not yet been achieved. Grain boundary studies have revealed that coincidence-site-lattice (CSL) boundaries have stronger resistance to intergranular degradations than random boundaries. The concept of ‘grain boundary design and control' has been refined as grain boundary engineering (GBE). GBEed materials which are characterized by high frequencies of CSL boundaries are resistant to intergranular degradations. Our group has achieved very high frequencies of CSL boundaries in commercial stainless steels by GBE. GBEed stainless steels showed significantly stronger resistance to intergranular corrosion (see Figs. 1 and 2), weld-decay, knife-line attack, stress corrosion cracking, liquid-metal embrittlement, radiation damage, etc. and much longer creep life (see Fig. 3) than the unGBEed ones.
実用化イメージ

By using this GBE processing, we expect to conduct effective collaborative research in related fields.

Researchers

Graduate School of Engineering

Yutaka Sato

[Crevice corrosion]

Chemical imaging devices which operate in severe environments

NEXT
PREV
特徴・独自性
  • We developed both pH and Cl- imaging plates, which can visualize the pH and Cl- concentration on metal surfaces in acidic environments. The pH range is from 3.0 to 0.5, and Cl- concentration up to 4 M can be measured. Fluorescent dyes are successively used for pH and Cl- imaging in the field of biology, but their sensitivity tends to be insufficient in acidic and/or highly concentrated chloride solutions. A glass plate with a sol-gel sensing layer, which contains a pH indicator or a Cl- sensitive florescent dye was fabricated and validated using the solutions with various pH values and Cl- concentrations. Changes in the pH and Cl- distribution on stainless surface in an acidic environment were measured quantitatively.
実用化イメージ

The newly developed imaging plates can be used to investigate the mechanism of various chemical reactions, such as corrosion, which occurs in an acidic environment. Micro-flow imaging using our sensing technique will be a promising approach to understand the catalytic chemistry of metal surfaces.
強調

Researchers

Graduate School of Engineering

Izumi Muto

[Critical metal free secondary battery]

Advanced Nanotechnology for Critical metal free secondary battery

NEXT
PREV
特徴・独自性
  • Monoatomic layered materials of Graphene, Transition metal sulfide nanosheet, nanocrystalline active materials, nanoparticles and nanoporous materials are investigated for realizing high capacity, high power, high safety and low cost energy storage devices as a post- Lithium ion battery. Advanced chemistry of functional materials and device processes for All solid state battery, Magnesium battery, fuel cells, supercapacitor and wearable batteries are investigated.
実用化イメージ

Academia – Industry collaboration with manufacturing companies of functional materials, batteries, and also smart grid, renewable energy, electrical power companies are encouraged for developments of advanced energy materials and post-Lithium ion battery.

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Itaru Homma

[crops]

Improvement of Seed Production by Using Reproductive Trait in Crops, Especially, Rice and Cruciferous Crops

NEXT
PREV
概要

The recent spate of extreme weather events is threatening to reduce crop seed and fruit production. We have identified a catalog of genes that respond under low and high temperature stress, and will construct a system that enables production under temperature stress through genome editing and other methods.

従来技術との比較

In addition to conventionally used genetic recombination methods, genome editing technology has made it possible to modify genes that can be used for practical purposes.

特徴・独自性
  • Crops are important for food, environment recovery, energy production, and amenity activity for human being. For improvement of crop seed production, the breeding of crops having environmental stress, is important. Especially the developmental stage from pollination to fertilization is quite weak for these environmental stresses. Thus, by breeding of reproductive trait, we will establish the high productivity and quality of crop seeds. From our research, we found several stress-tolerant genes. We already started the research by both basic and applied level.
実用化イメージ

For application, we evaluated by taking prize for application in 2001. And our basic data has been published in international Journal, "Nature" and "Science". If anyone is interested in these genes, we hope to conduct to collaborative research for establishing the useful breeding lines.

Researchers

Graduate School of Life Sciences

Masao Watanabe

[cross-linking]

Development of Intelligent Molecules for the Regulation of Gene Expression in Cells

NEXT
PREV
特徴・独自性
  • The artificial control of gene expression by synthetic oligodeoxynucleotides (ODNs) has been the subject of considerable interest. In particular, ODNs conjugated with a cross-linking agent have been expected to enhance the inhibitory effect. Recently, microRNAs (miRNA) endogenously expressed small regulatory non-coding RNAs, are recognized as playing a critical role in regulating gene expression and the great concerns have been raised about efficient antisense oligonucleotides against miRNAs. We have already demonstrated that ODNs bearing a 2-amino-6-vinylpurine (2-AVP) derivative exhibited efficient interstrand cross-linking to cytosine selectively. The unique structural features of AVP are to possess both the hydrogen bond donor-acceptor sites as recognition sites and the vinyl group as a reactive moiety in a single molecule. Recently, we have developed of the novel cross-linking agents, which are designed based on the unique structure of AVP. These derivatives can react to thymine at the complementary site with highly selective and efficient under neutral conditions. We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.
実用化イメージ

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Fumi Nagatsugi

[cruciferous plants]

Improvement of Seed Production by Using Reproductive Trait in Crops, Especially, Rice and Cruciferous Crops

NEXT
PREV
概要

The recent spate of extreme weather events is threatening to reduce crop seed and fruit production. We have identified a catalog of genes that respond under low and high temperature stress, and will construct a system that enables production under temperature stress through genome editing and other methods.

従来技術との比較

In addition to conventionally used genetic recombination methods, genome editing technology has made it possible to modify genes that can be used for practical purposes.

特徴・独自性
  • Crops are important for food, environment recovery, energy production, and amenity activity for human being. For improvement of crop seed production, the breeding of crops having environmental stress, is important. Especially the developmental stage from pollination to fertilization is quite weak for these environmental stresses. Thus, by breeding of reproductive trait, we will establish the high productivity and quality of crop seeds. From our research, we found several stress-tolerant genes. We already started the research by both basic and applied level.
実用化イメージ

For application, we evaluated by taking prize for application in 2001. And our basic data has been published in international Journal, "Nature" and "Science". If anyone is interested in these genes, we hope to conduct to collaborative research for establishing the useful breeding lines.

Researchers

Graduate School of Life Sciences

Masao Watanabe

[Cryogenics]

Development of Sustainable Integrated Multiphase Energy System

NEXT
PREV
特徴・独自性
  • Our laboratory is focusing in the development of innovative multiphase fluid dynamic methods based on the multiscale integration of massively parallel supercomputing and advanced measurements, and research related to creation of environmentally conscious energy systems. Furthermore, we promote basic research for the creation of risk management science and associated new multiphase flow system directly linked to sustainable energy represented by a high-density hydrogen storage technology.
実用化イメージ

P2P Hydrogen supply chain, Elastohydrodynamic lubrication, Supercomputing of Laser melting and sputter particle formation, High pressure diecast computing / Automotive industry, Additive manufacturing

Researchers

Institute of Fluid Science

Jun Ishimoto

[Crypto-currency]

Blockchain-based Approachs for High Secure P2P-type Decentralized Cloud Storage and Practical Smart Contract for Trading Personal Data

NEXT
PREV
特徴・独自性
  • We are developing a decentralized P2P (Peer to Peer) type cloud storage that realizes innovative level of security by use of surplus storages of P2P nodes with the Blockchain technology. The developed storage can avoid the risk of large-scale information leakage of stored data due to the weakness of the central server. By using our cryptographic currency for rewards and usage fees in the storage, fair storage usage of all users can also be achieved.
  • In addition, We are developing a unique smart contract technology for practical decentralized trading of personal data among an unspecified number of users.
実用化イメージ

We hope to conduct collaborative researches with companies developing Bitcoin 2.0 type application (e.g. smart contract, Fintech) based on the Blockchain technology, the Internet of Things (IoT) technology, Medical Database for practical use.

Researchers

Center for Data-driven Science and Artificial Intelligence

Masao Sakai

[Cryptography]

Visual Computing with Secure ICT in the Big Data Era

NEXT
PREV
特徴・独自性
  • Our study focuses on sensing, processing, recognition, understanding, and analysis of enormous visual data collected in real-world environments. We have invented a set of advanced techniques of sub-pixel image analysis using phase-based image matching. Potential applications include personal recognition using various biometric traits (e.g., face, fingerprint, palm print, finger knuckle print, iris, and medical radiographs), machine vision, multi-view 3D reconstruction, image database search, and medical image computing. We are also studying fundamental techniques for building secure ICT infrastructure for the big data era; our research interests include tamper-resistant cryptographic processing and biometrics-based secure remote authentication.
実用化イメージ

We can provide collaboration and information exchange services for industries and other research organizations in the fields of image processing, computer vision, information security, biometrics, LSI design, and embedded system technologies. Many researchers and engineers from various companies, universities, and research institutions have visited our laboratory regardless of their technology fields. Our staff at the Intelligent Information System (IIS) Research Center will welcome potential collaborators: info@iisrc.ecei.tohoku.ac.jp

Researchers

Administrative Staff

Takafumi Aoki

Cyber Physical Systems Security and Its Applications

NEXT
PREV
特徴・独自性
  • Our study focuses on information security technologies for the next-generation ICT society fusing real-world and cyber-space computing. We are now conducting the research and development of ultra-high-speed, ultra-low power LSI computing to perform security functions such as encryption and secure computing, secure implementation technologies to protect systems from various physical attacks (attacks carried out by physical access to the system), and security optimization technologies tailored to the system usage environment and application area.
実用化イメージ

We can provide collaboration and information exchange services in the fields of information security. In particular, we have experiences of domestic/international collaborative researches on embedded security with some companies, universities, and governmental institutes.

Researchers

Research Institute of Electrical Communication

Naofumi Homma

[crystal growth]

A novel crystal growth via controlling an energy relationship between crystal and melt with applying an electric field

NEXT
PREV
特徴・独自性
  • This lab is concerned with the novel approach mainly for the growth from melt by studying the relationship between the interface dynamics during growth and properties of grown crystals. Special interests lie in the growth of new crystals via the imposition of an interface-electric field. Nano-scaled control of crystal growth is executed in an electric double layer of ~nm thickness that is induced by applying an external electric field on the growth interface. Some of our growth results brought by applying an electric field are;
  • 1. Growth of Langasite-type crystals for the pressure sensor at high temperature by manipulating the energy relationship between crystal and melt.
  • 2. Easy nucleation of protein crystals that are normally hard to crystallize.
  • 3. Formation of Si crystals with desired structure by manipulating the interface instability of Si.
  • Crystals developed this way will widen an opportunity to collaborate with industries in the field of the piezoelectric, magnetic, optic and other fields related to the highly-networked information society.
実用化イメージ

Researchers

New Industry Creation Hatchery Center

Satoshi Uda

Development of Compound Semiconductor Radiation Detectors

NEXT
PREV
特徴・独自性
  • The main research subject of our group is developing material purification methods, crystal growth methods and detector fabrication technologies for compound semiconductor radiation detectors. Our group intensely studies a compound semiconductor, thallium bromide (TlBr), for fabrication of gamma-ray detectors for the advanced radiation applications. The attractive physical properties of TlBr lie in its high atomic number (Tl: 81, Br: 35), high density (7.56 g/cm3) and wide bandgap (2.68 eV). Due to the high atomic number and high density, TlBr exhibits high photon stopping power. The wide bandgap of TlBr permits the device low-noise operation at and above room temperatures.
実用化イメージ

Our group focuses on development of compound semiconductor radiation detectors for advanced radiation applications including ultra-high resolution PET systems, ultra-high resolution SPECT systems, photon counting CT systems and Compton cameras. We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.

Researchers

Graduate School of Engineering

Keitaro Hitomi

High-Temperature Processes and Measurements of Materials

NEXT
PREV
特徴・独自性
  • Fukuyama laboratory studies novel material processing based on chemical thermodynamics with high-temperature thermophysical property measurements. As examples, we are developing new crystal growth processes to bring a breakthrough in nitride-semiconductor devices, which are promising materials for next-generation optical devices applied in environmental, medical, bio and information technologies fields. Database of thermophysical properties of materials is needed for modeling heat and mass transports in materials processes.
実用化イメージ

A new thermophysical property measurement system is currently under development, which enables accurate measurements of heat capacity, thermal conductivity, emissivity, density and surface tension of high-temperature melts, utilizing electromagnetic levitation in a dc magnetic field.

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Hiroyuki Fukuyama

[crystal structure]

Development of Potential Thermoelectric Materials

NEXT
PREV
特徴・独自性
  • We have been exploring novel thermoelectric materials. Functions of a solid substance primarily depend on the electronic structure, directly derived from its crystal structure. Through high-quality structure analyses using neutron and X-ray diffraction, combined with first-principles calculations, we have been fabricating materials with desired functions. To date, more than 40 novel materials have been discovered based on our guiding principles.
実用化イメージ

For developing future device technologies, challenges on thin-film thermionic multilayers and organic thermoelectric materials are currently underway.

Researchers

Graduate School of Engineering

Yuzuru Miyazaki

[crystallinity]

newExtraction of cellulose nanofibers (CNFs) from sea pineapples' shells and application for energy materials

NEXT
PREV
概要

The sea pineapple is the only animal that produces cellulose, and its shells, excluding the edible parts, are treated as industrial waste. By removing proteins and other components from the sea squirt shells and fibrillating them, cellulose nanofibers (CNFs) can be extracted. We have focused on the fact that CNFs derived from sea squirt shells have a higher degree of crystallinity and greater mechanical strength compared to those from wood, and we are exploring various applications of this material. Furthermore, since the material transforms into high-quality carbon upon calcination, we successfully developed "nano-blood carbon catalysts" by mixing it with dried blood powder and calcining the mixture. These catalysts are being applied in fuel cells, water electrolysis, and metal-air batteries.

従来技術との比較

CNFs derived from sea pineapple's shells have a higher degree of crystallinity compared to those from wood and provide longer fibers, resulting in high strength. When calcined, they transform into high-performance carbon.

特徴・独自性
  • We are the only research laboratory that has consistently developed a process for the simple and large-scale purification of CNFs derived from sea pineapple's shells, along with the creation of film materials that leverage their unique properties (mechanical, engineering, surface science, electrical, and thermal characteristics), as well as the development of carbonized materials.
実用化イメージ

We offer materials derived from sea pineapples' shell CNFs, as well as their carbonized products and catalysts. Please feel free to consult us regarding material supply, carbonization processes, or the utilization of catalysts.

Researchers

Advanced Institute for Materials Research

Hiroshi Yabu