"N" Keywords - 72 Result(s)

 N

[Neuroimaging]

Brain Mechanism Realizing Human Mind

NEXT
PREV
特徴・独自性
  • I am investigating the brain mechanism of human mind. Specifically, my target is the internal schema that dissociate the self and other in the following three layers: physical, interpersonal, and social domains.
実用化イメージ

  • Improvement of the interface of the system
  • Clarifying the neuro-cognitive mechanism of the effect on the customer
  • New concept of the customer satisfaction

Researchers

Institute of Development, Aging and Cancer

Motoaki Sugiura

[Neuromorphic computing]

Spintronics device

特徴・独自性
  • To realize ultralow-power and high-performance integrated circuit and information processing, spintronics physics, material, devices are studied.
実用化イメージ

Researchers

Research Institute of Electrical Communication

Shunsuke Fukami

[Neurophysiology]

Analysis of Biological Signals and Visualization

NEXT
PREV
特徴・独自性
  • Recent development of sensor technology and ICT have enabled collection and acculumation of huge amount and wide variety of biological data. We have been investigating analysis and processing methods of the biological data for supporting clinical diagnosis and health care. For example, development of extraction algorithm of fetal electrocardiogram from maternal abdominal siglnals, and estimation and visualization algorithms of status of autonomic functions based on diverse biological signals.
実用化イメージ

System development of biosignal anaysis, visualization, and diagnosis.
Development of monitoring and evaluation methods of alertness and sleepiness of traffic driver and workers.
Shift work scheduling based on circadian clock.

Researchers

Unprecedented-scale Data Analytics Center

Mitsuyuki Nakao

[Neuroscience]

Functional and Molecular Imaging with Positron Emission Tomography (PET)

NEXT
PREV
特徴・独自性
  • Using positron emission tomography (PET), we can measure the regional metabolism, perfusion and signal transmission between neurotransmitters and receptors in various organ systems of living humans and animals, such as the brain and heart. Recent technical developments have shown that the mind, or at least some parts of it, can be demonstrated by "imaging".
実用化イメージ

Our group has had considerable achievements in clinical research on drug effects and side effects, elucidation of underlying mechanism of alternative and complementary therapies, as well as exercise physiology.

Researchers

Cyclotron and Radioisotope Center

Manabu Tashiro

[neurotrophic factor]

Development of a Novel Therapy for Amyotrophic Lateral Sclerosis (ALS) Using Hepatocyte Growth Factor (HGF)

NEXT
PREV
特徴・独自性
  • Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by systematic motor neuron degeneration. Approximately 20% cases of familial ALS are caused by mutations in the superoxide dismutase 1 (SOD1) gene. We developed transgenic rats that express a human SOD1 gene with two different ALS-linked mutations (G93A or H46R) showing progressive motor neuron degeneration and paralysis. The larger size of the rat ALS models as compared with existing mouse models will facilitate studies on neuroprotective and neuro-regenerative strategy involving manipulations of cerebrospinal fluid and spinal cord.
実用化イメージ

Hepatocyte growth factor (HGF) is one of the most potent survival-promoting factors for motor neurons. Continuous intrathecal infusion of human recombinant HGF (hrHGF) attenuated loss of spinal motor neurons, astrocytosis, and microglial activation, leading to prolonged survival in the ALS rats. Safety and toxicology testing of the hrHGF protein in non-human primates should prompt further clinical trials in human ALS patients.

Researchers

Graduate School of Medicine

Masashi Aoki

[neutrino observation]

High Sensitivity Radioactivity Measurement at Ultra-Low Radioactivity Environment

NEXT
PREV
特徴・独自性
  • Research Center for Neutrino Science established ultra-low radioactivity environment (trillion times lower than natural environment) with 1200 cubic-meter organic scintillator detector at 1000m underground where very stable temperature/humidity and low vibration are maintained. We are pursuing high sensitivity measurements, especially neutrino observation, and are also developing purification system for ultra-low radioactivity and high performance radioactivity detectors.
実用化イメージ

The established ultra-low radioactivity environment is suitable for rare phenomena study and is also applicable for high sensitivity radio-impurity measurement. It may also apply to investigation of biological influence of low radioactivity irradiation. The other applications such as neutrino detection technique for monitoring nuclear reactors and medical use of high sensitivity radioactivity detectors may also be considered.

Researchers

Research Center for Neutrino Science

Kunio Inoue

[neutron beam]

Development of the cyclotron accelerator and its application

NEXT
PREV
特徴・独自性
  • We develop technology of the cyclotron accelerator and its application as follows. 1)Ion source (particularly heavy ion source), 2)design of ion optics, 3)device control system for the cyclotron, 4)RF system, 5)detectors for charged particles, gamma ray, and neutron, 6) radiation test by ion and neutron beam.
実用化イメージ

We have beam lines dedicated to the neutron irradiation and the ion irradiation, respectively. We can provide fast neutron beam (20-70 MeV), and various ion beam such as p, alpha, and heavy ions up to Xe. We also develop a neutron imaging technique using fast neutron.

Researchers

Cyclotron and Radioisotope Center

Masatoshi Itoh

[Neutron scattering]

Neutron scattering study on macroscopic quantum phenomena

NEXT
PREV
特徴・独自性
  • In contrast to other scattering techniques, such as x-ray and electron diffractions, neutron scattering has the following advantages: 1) light atoms, such as H and Li, can be detected; 2) electron spins can be detected; 3) low energy excitations can be investigated. Using the neutron scattering technique, we search for macroscopic quantum phenomena in many-body electron systems, such as macroscopic singlet ground states in the quantum frustrated magnets and spin-fluctuation-mediated unconventional superconductors.
実用化イメージ

As noted above, neutron scattering can be used for investigating magnetic structure, spin dynamics, light atom positions in crystalline materials and their dynamics. Hence, this technique is very useful when those pieces of information are to be known.

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Taku J Sato

[nickel-free]

Development of the Nickel-Free Dental Magnetic Attachment Using the Magnetic Shielding Material which Lost its Magnetism by Nitrogen-Solid Solution

NEXT
PREV
特徴・独自性
  • In the dental magnetic attachments which retain dentures, superstructures of dental implants, and so on, the non-magnetic stainless steel containing nickel is used in order to reinforce their retentive force by a magnetic circuit. The surface layer of magnetic stainless steel which loses its magnetism by nitrogen-solid solution obtained from heating in nitrogen gas at high temperature, enable to form a magnetic circuit, which does not contain nickel at all, and to reduce its components and manufacturing processes. The method using the nitrogen-solid solution in this study is warrantable to manufacture the nickel-free dental magnetic attachment with high safety.
実用化イメージ

The nickel-free magnetic attachment realizes a retainer with higher safety, and can expect the application to medical and dental care for clinical uses, such as not only a denture but a dental implant, an epithese, and so on with easy desorption.

Researchers

Graduate School of Dentistry

Yukyo Takada

[NIRS]

Food Palatability, Product Usability, and Preference; An Approach from Psychology and Neuroscience.

NEXT
PREV
特徴・独自性
  • My research interest is peoples' perception of external stimulus. Based on these researches and our knowledge, I can offer you an idea of the products that give consumers satisfaction. Also on the basis of psychological and neuro-scientifc experiences and knowledges, I can offer you a transdisciplinary approaches on human perception, cognition, emotion and decision making.
実用化イメージ

Marketing and developing of the products such as foods, beverages, fabric softeners, perfumes, body deodorants etc. The knowledges and research tools are also useful in regulating the malodor in the air pollution, in developing the public services and in elevating public quality of life.

Researchers

Graduate School of Arts and Letters

Nobuyuki Sakai

[Nitride coating]

Microwave Processing of Functional Inorganic Materials

NEXT
PREV
特徴・独自性
  • Microwave processing is one of the attractive fields in recent materials processing. We perform various materials processing using non-equilibrium reaction field induced by microwave and/or ultrasonic irradiation. The topic contains powder metallurgy, nitride coatings, synthesis of new functional materials, fabrication of nanoparticles, etc. Recently we have developed a new TiN coating method using our microwave irradiation equipment operated at a frequency of 2.45 GHz. The method is simple but applicable to various substrates with complex shape. This method can be applied to various nitride coatings and will open a new coating technology in many fields of applications.
実用化イメージ

The major targets of TiN coatings are for cutting tools, ball bearings, dental implants, die and mold for stamping, and ornaments. The newly developed method makes it possible to perform nitride coatings within a short time using a standard microwave heating equipment. We hope to conduct collaborative research with a willing company for a practical application of these technology.

Researchers

Administrative Staff

Hirotsugu Takizawa

[nitride semiconductor]

newCheaper, higher quality GaN freestanding substrates using N polarity control.

概要

Nitride semiconductor free-standing substrate production method
https://www.t-technoarch.co.jp/data/anken_en/T14-121.pdf
This invention relates to a technique for producing high-quality nitride semiconductor freestanding substrates at a lower cost. The invention also includes the use of SCAlMgO4 substrates as seed crystals. The dislocation density of nitride semiconductors on this substrate becomes lower. By controlling the crystal polarity, the crystal diameter can be expanded as well as the thickness of the nitride semiconductor.

従来技術との比較

It is possible to fabricate freestanding nitride semiconductor substrates with lower through-dislocation density than conventional substrates. Furthermore, the cleavage property of ScMgAlO4, which serves as the substrate, facilitates the exfoliation of the nitride semiconductor and reduces the cost of substrate fabrication.

特徴・独自性
  • Usage of ScAlMgO4 as a source substrate.
  • Expansion of crystal diameter by using N-polar growth
  • When ScAlMgO4 is used as the seed crystal and AlN is formed as the surface protective layer of this crystal, the surface shall be further nitrided after oxidation of the surface.
  • The main surface of the seed crystal shall be inclined 0.4 to 1.2° from the c-plane.
実用化イメージ

This invention is to provide high-quality, low-cost free-standing nitride semiconductor substrates for optical devices such as light-emitting diodes and lasers, and transistors operated under high power, high voltage, and high frequency. Companies are expected to verify the commercialization of the product.

Researchers

New Industry Creation Hatchery Center

Takashi Matsuoka

[Nitride semiconductors]

R&D in Semiconductor Materials and their Device Applications Bringing System Evolutions

NEXT
PREV
特徴・独自性
  • 1. Development of Distributed Feedback (DFB) Laser Diodes (LD) widely used in optical communications systems realizing a highly information-based society. This LD increases the transmission capacity by 25,000 times per fiber which means the bit rate of 10Tb/s.
  • 2. Nitride semiconductors famous for blue light emitting diodes.
  • (a) Proposal of InGaAlN system considering device applications in 1989
  • (b) Success in growth of single crystalline InGaN by metalorganic vapor phase epitaxy (MOVPE) in 1989
  • (c) Prediction of band-gap energy (Eg) of InN much smaller than the values reported in 1980s and its   experimental confirmation in 2002
  • (d) Observation of photoluminescence from InGaN in 1991
  • (e) Prediction of phase separation in InGaAlN in 1997
実用化イメージ

DFB-LD: Fabrication of periodic structure with submicron scale, Epitaxial growth of semiconductor films on the substrate with fine structures, LD fabrication process, device evaluation, and device simulation

Nitride Semiconductors: MOVPE growth, N-polar growth, Evaluation of semiconductor materials, Fabrication of light-emitting devices, solar cells, and high-power transistors

Researchers

New Industry Creation Hatchery Center

Takashi Matsuoka

[nitrogen-solid solution]

Development of the Nickel-Free Dental Magnetic Attachment Using the Magnetic Shielding Material which Lost its Magnetism by Nitrogen-Solid Solution

NEXT
PREV
特徴・独自性
  • In the dental magnetic attachments which retain dentures, superstructures of dental implants, and so on, the non-magnetic stainless steel containing nickel is used in order to reinforce their retentive force by a magnetic circuit. The surface layer of magnetic stainless steel which loses its magnetism by nitrogen-solid solution obtained from heating in nitrogen gas at high temperature, enable to form a magnetic circuit, which does not contain nickel at all, and to reduce its components and manufacturing processes. The method using the nitrogen-solid solution in this study is warrantable to manufacture the nickel-free dental magnetic attachment with high safety.
実用化イメージ

The nickel-free magnetic attachment realizes a retainer with higher safety, and can expect the application to medical and dental care for clinical uses, such as not only a denture but a dental implant, an epithese, and so on with easy desorption.

Researchers

Graduate School of Dentistry

Yukyo Takada

[Non-destructive testing]

X-Ray Phase Imaging for High-Sensitive Non-Destructive Testing

NEXT
PREV
特徴・独自性
  • Conventional X-ray imaging methods that rely on X-ray attenuation cannot generate clear contrast in the observation of low-density materials such as polymers consisting of low-Z elements. However, the sensitivity to the materials can be improved drastically by X-ray phase imaging that detects X-ray refraction caused by the materials. X-ray Talbot or Talbot-Lau interferometry consisting of X-ray transmission gratings is now constructed in laboratories for X-ray phase imaging. X-ray phase tomography is also realized, enabling high-sensitive three-dimensional observation.
  • X-ray phase imaging can be utilized for X-ray non-destructive testing of industrial products and baggage that cannot be checked conventionally.
実用化イメージ

We aim at appending a phase-contrast mode to micro-CT apparatuses and developing screening apparatuses in production lines.

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Atsushi Momose

[non-inavasive treatment]

Development of Optical Sysytems for Noninvasive Treatment and Diagnosis

NEXT
PREV
特徴・独自性
  • Optical fiber-based endoscopic systems for non-invasive treatment and diagnosis are developed. The fiber transmits high-powered laser light for treatment and low-powered light for diagnosis. We develop treatment and diagnosis systems utilizing not only common glass-based optical fibers but hollow-optical fibers. Hollow optical fibers deliver high-powered infrared lasers and light with wide range of wavelength from ultraviolet and far infrared.
実用化イメージ

Our potential collaborators will be medical device manufactures, as well as any electronic device, communication device, and measurement instrument manufactures considering new entry to the field.

Researchers

Graduate School of Biomedical Engineering

Yuji Matsuura

[non-volatile memory]

Electrical Spin Generation and Manipulation in Semiconductors

NEXT
PREV
特徴・独自性
  • Since spin orbit interactions caused by the structural inversion asymmetry and the bulk inversion asymmetry induce an effective magnetic field in III-Vsemiconductor heterostructures, it is possible to realize the new functional devices based on the electrical control of the spin precession. We study the electrical spin generation by using spatial modulation of spin orbit interaction, which demonstrates Stern-Gerlach spin filter in semiconductors, and research ultra-fast spin dynamics by using time resolved Kerr rotation microscopy. We also investigate a spin MOSFET based on the perpendicular magnetic materials and electric-field induced magnetization control. We can reduce the leak current and the signal delay in the logic circuit. With the non-volatility of the ferromagnetic source and drain electrodes, random access memory is also enabled by using the spin MOSFET structure.
実用化イメージ

Target application will be low power logic devices and non-volatile memory based on electron spins and also future metal-based spintronic devices.

Researchers

Graduate School of Engineering

Makoto Koda

[Nondestructive Inspection and Evaluation]

Prediction and Prevention of Fractures

NEXT
PREV
特徴・独自性
  • We have been developing methods for explicating the dominant factors that determine the physical and chemical properties of materials and stacked structures used in human societies. Since the number of element atoms which consists of advanced materials has been increasing, and the crystallographic structure of the materials has become very complicated, both the various properties and reliability of the materials fluctuate significantly in nano-scale, and thus, deteriorate easily due to the local damages of the materials.
実用化イメージ

To design the optimal structure, composition of materials, and the fabrication process of both materials and stacked structures, we are going to develop a method of analyzing the atomic structure of thin film materials based on quantum mechanics and experimental methods for measuring material properties, atomic scale damage or defects in nano-materials.

Researchers

Graduate School of Engineering

Hideo Miura

[Nondestructive Testing]

Fabrication of Imitative Stress Corrosion Cracking Specimens for the Development of Nondestructive Evaluation Techniques

NEXT
PREV
特徴・独自性
  • The emergence of stress corrosion cracking is one of the most important issues from the viewpoint of aging management and maintenance of nuclear power plants. There is a large discrepancy between stress corrosion cracking and other cracks such as fatigue cracks from the viewpoint of nondestructive testing and evaluations, which requires suitable specimens containing stress corrosion cracking for the development of nondestructive testing and evaluation techniques and also for personnel training. However, artificially introducing stress corrosion cracking needs large cost and long time. Furthermore, several studies have pointed out that such articial stress corrosion cracking is not always similar to natural ones. On the basis of the background above, we develop a method to fabricate "imitative" stress corrosion cracking specimens using diffusion bonding.
実用化イメージ

The method enables one to introduce a region whose response is almost identical to actual stress corrosion cracking from the viewpoint of nondestructive testing. Whereas the dimension of the region is accurately controllable, the method requires much less cost and time comparing the conventional ones using corrosive environment. Patent is already applied for.

Researchers

Graduate School of Engineering

Noritaka Yusa

[Nonlinear analysis]