"O" Keywords - 52 Result(s)

 O

[Optical sensor]

Design and Fabrication of Micro-Optical Devices Based on Optics, Especially Optical MEMS and Sensors

NEXT
PREV
特徴・独自性
  • On the basis of optical engineering, optical technologies for sensing mechanical motion, spectroscopic properties, and other physical/chemical characteristics are investigated. Moreover, using semiconductor micro/nano-fabrication technology, integrated micro-optical sensors, micro/nano optical systems, optical micro-electro-mechanical systems (MEMS) are studied. Micro laser scanner for display, deformable mirror for telescope, optical displacement encoder, and fluorescent analysis system are the examples of research topics.
実用化イメージ

Optical design, Optical industries, Industries relating to semiconductor micro fabrication and MEMS, optical telecommunications, etc.

Researchers

New Industry Creation Hatchery Center

Kazuhiro Hane

[Optically Active Compounds]

Advanced Molecular Transformations by Organocatalysts

NEXT
PREV
特徴・独自性
  • The development of organic molecules which function as a catalyst has been extensively investigated to achieve selective and efficient transformation of organic molecules. Brønsted acids and bases are commonly employed as the catalyst in synthetic organic chemistry. To aim at their functionalization, axially chiral phosphoric acids and axially chiral guanidine bases have been developed as chiral Brønsted acid and base catalysts, respectively. A variety of optically active compounds has been synthesized through the development of highly stereoselective reactions using these catalysts.
実用化イメージ

The development of chiral Brønsted acid and base catalysts has been accomplished as recoverable and reusable organocatalysts and highly stereoselective molecular transformations have been established using these catalysts. The present methodology is applicable to process chemistry in preparing medicines and relevant compounds on the basis of the selective and efficient molecular transformations thus developed with reduction of the waste material.

Researchers

Graduate School of Science

Masahiro Terada

[Optimization Problem]

Optimizing everything / Optimal Society

NEXT
PREV
特徴・独自性
  • Aiming at developing practical quantum optimization technology known as quantum annealing, we are working on exploring basic technologies that can overcome the limitations and applications in collaboration with multiple companies. The advantage of the method is that it can be used simply by formulating a cost function that draws the goal to be optimized once, but we are not limited to the original method. We extend it by considering a much easier problem, sequential optimization by learning, black box optimization, etc.. In particular, it is being applied to automated driving, logistics in factories, and evacuation guidance during disasters.
実用化イメージ

Applications to route search problems such as automatic driving of various vehicles, evacuation route guidance at the time of disaster, process scheduling and a large number of combination problems. We can provide a solution to combinatorial optimization in each industry. (Transportation / distribution, manufacturing, materials, drug discovery, etc.)

Researchers

Graduate School of Information Sciences

Masayuki Ohzeki

[Oral malodor]

Oral Biofilm Functional Analysis: from “What Are They?" to “What Are They Doing?"

NEXT
PREV
特徴・独自性
  • A large number of microorganisms inhabit the oral cavity, such as the teeth, gingiva and tongue, in the form of oral biofilm. The oral cavity forms an ecosystem where the host (humans) and parasites (microorganisms) coexist. Disruption of the balance of this oral ecosystem leads to dental caries, periodontal diseases and oral malodor, and even deterioration of dental materials.
  • Using leading-edge techniques of anaerobic experimental systems including original and unique devices, as well as the notion of "omics" such as metagenomics and metabolomics, we conduct research on oral biofilm functions. Knowledge of oral biofilms, from "what are they?" to "what are they doing?", enables us to address their control, that is, prevention of and therapy for oral biofilm-associated diseases.
実用化イメージ

Risk assessment of oral biofilm-associated diseases, such as dental caries, periodontal disease, oral malodor and aspiration pneumonia
Effects of medicine and food ingredients on oral biofilm function
Evaluation of biofilm-mediated material deterioration

Researchers

Graduate School of Dentistry

Nobuhiro Takahashi

[oral mucosa]

Method for efficient production of induced pluripotent stem cells utilizing cells derived from oral mucosa

特徴・独自性
  • We provide a technique which can produce induced pluripotent stem (iPS) cells with high establishment efficiency and imposes lower burden on patients. iPS cells can be produced efficiently with significantly increased establishment efficiency by selecting cells derived from the oral mucosa and introducing a reprogramming factor, which can induce the reprogramming of the cells into pluripotent stem cells, into the cells.
実用化イメージ

Researchers

Graduate School of Dentistry

Hiroshi Egusa

[Organic - inorganic Hybrid Materials]

Synthesis and material characterization of new organic ferroelectric materials, molecular semiconductors, molecular magnets.

NEXT
PREV
特徴・独自性
  • Multifunctional molecular-assemblies and hybrid organic - inorganic materials are examined from the viewpoint of structural freedom of organic molecules. The spin and electronic states of molecular-assemblies are designed in terms of electrical conductivity, magnetism, and ferroelectricity. Diverse molecular assemblies from single crystal, plastic crystal, liquid crystal, gel, to Langmuir-Blodgett film are our research targets, which were hybridized with inorganic gigantic clusters and metal nanoparticles. We are prepared to provide academic consultations to companies interested in our research.
実用化イメージ

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Tomoyuki Akutagawa

[Organic battery]

Advanced Nanotechnology for Critical metal free secondary battery

NEXT
PREV
特徴・独自性
  • Monoatomic layered materials of Graphene, Transition metal sulfide nanosheet, nanocrystalline active materials, nanoparticles and nanoporous materials are investigated for realizing high capacity, high power, high safety and low cost energy storage devices as a post- Lithium ion battery. Advanced chemistry of functional materials and device processes for All solid state battery, Magnesium battery, fuel cells, supercapacitor and wearable batteries are investigated.
実用化イメージ

Academia – Industry collaboration with manufacturing companies of functional materials, batteries, and also smart grid, renewable energy, electrical power companies are encouraged for developments of advanced energy materials and post-Lithium ion battery.

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Itaru Homma

[Organic Conductor]

Synthesis and material characterization of new organic ferroelectric materials, molecular semiconductors, molecular magnets.

NEXT
PREV
特徴・独自性
  • Multifunctional molecular-assemblies and hybrid organic - inorganic materials are examined from the viewpoint of structural freedom of organic molecules. The spin and electronic states of molecular-assemblies are designed in terms of electrical conductivity, magnetism, and ferroelectricity. Diverse molecular assemblies from single crystal, plastic crystal, liquid crystal, gel, to Langmuir-Blodgett film are our research targets, which were hybridized with inorganic gigantic clusters and metal nanoparticles. We are prepared to provide academic consultations to companies interested in our research.
実用化イメージ

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Tomoyuki Akutagawa

[Organic Ferroelectrics]

Synthesis and material characterization of new organic ferroelectric materials, molecular semiconductors, molecular magnets.

NEXT
PREV
特徴・独自性
  • Multifunctional molecular-assemblies and hybrid organic - inorganic materials are examined from the viewpoint of structural freedom of organic molecules. The spin and electronic states of molecular-assemblies are designed in terms of electrical conductivity, magnetism, and ferroelectricity. Diverse molecular assemblies from single crystal, plastic crystal, liquid crystal, gel, to Langmuir-Blodgett film are our research targets, which were hybridized with inorganic gigantic clusters and metal nanoparticles. We are prepared to provide academic consultations to companies interested in our research.
実用化イメージ

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Tomoyuki Akutagawa

[organic materials]

Emergence in collective electrons in organic molecular materials

NEXT
PREV
特徴・独自性
  • The main research subjects in this group are the experimental investigations of the organic molecular conductors. The characteristic properties of the organic materials are multiple flexibilities owing to the assemble structure of nanometer-size molecules. This flexbility comes up recently for developing the organic electronic devices. We explore the fundamental electronic properties of the organic molecular materials which have wide range of the ground states from superconductivity to insulating states resulting from the strongly correlated electrons in the molecular pi-orbital. Such features are closely connected to flexible and multiple degrees of freedom in charge, spin, molecular latticeand molecules themselves. We are actively studying on the interesting and important issues in the condensed matter physics from the viewpoints of the characteristic flexbility of the organic molecular materials. We are prepared to provide academic consultations to companies interested in our research.
実用化イメージ

Researchers

Institute for Materials Research

Takahiko Sasaki

Spintronics Devices and Materials

NEXT
PREV
特徴・独自性
  • Spintronics is a technology utilizing electron spin which provided magnetic sensor, nonvolatile magnetic memory, and so on. Our studies are as below.
  • Noble & Rare-earth free magnetic films with large perpendicular magnetic anisotropy. We achieved to develop various Mn-bases alloy films exhibiting high perpendicular magnetic anisotropy (Fig.1 ).
  • THz range observation of magnetization motion. We achieved to detect a motion of magnetization using pulse laser in time domain (Fig. 2).
  • Novel organic spin devices. We achieved to fabricate hybrid junction consisting of an organic layer sandwiched by two inorganic magnetic layers and to observe magnetoresistance effect.
  • Tunnel Magnetoresistive devices: We are developing TMR devices with Mn-Ga alloys films (Fig.3 ).
実用化イメージ

Magnetic memory and storage. Microwave and Terahertz wave. Magnetic sensors.
We hope to conduct collaborative research with a willing company for a practical application of these devices and materials in industry.

Researchers

Advanced Institute for Materials Research

Shigemi Mizukami

[organic materials chemistry]

Fabrication of The Novel Designed Nanodrugs Composed of Poorly Water-Soluble Compounds

NEXT
PREV
特徴・独自性
  • One of our major research focuses is to design the novel drug nanoparticles, so called “Nano-prodrugs”, and to apply them as anticancer drugs or eye drops with excellent delivery efficiency. Nano-prodrugs are constructed by synthetic prodrugs molecules which contains poorly water-soluble substituent. They could be fabricated to nanoparticles with 100 nm or less in size by our reprecipitation technique, which has been used to create organic nanomaterials. We are aiming at practical application of our Nano-prodrugs in the near future.
実用化イメージ

Our reprecipitation technique for fabricating organic nanomaterials is a versatile technique that can be applied to various organic molecules as well as drug compounds. We hope to conduct collaborative research with a willing company on controlling and evaluating properties of the organic nanoparticles.

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Hitoshi Kasai

[organic molecules]

Emergence in collective electrons in organic molecular materials

NEXT
PREV
特徴・独自性
  • The main research subjects in this group are the experimental investigations of the organic molecular conductors. The characteristic properties of the organic materials are multiple flexibilities owing to the assemble structure of nanometer-size molecules. This flexbility comes up recently for developing the organic electronic devices. We explore the fundamental electronic properties of the organic molecular materials which have wide range of the ground states from superconductivity to insulating states resulting from the strongly correlated electrons in the molecular pi-orbital. Such features are closely connected to flexible and multiple degrees of freedom in charge, spin, molecular latticeand molecules themselves. We are actively studying on the interesting and important issues in the condensed matter physics from the viewpoints of the characteristic flexbility of the organic molecular materials. We are prepared to provide academic consultations to companies interested in our research.
実用化イメージ

Researchers

Institute for Materials Research

Takahiko Sasaki

[organic nanoparticles]

Fabrication of The Novel Designed Nanodrugs Composed of Poorly Water-Soluble Compounds

NEXT
PREV
特徴・独自性
  • One of our major research focuses is to design the novel drug nanoparticles, so called “Nano-prodrugs”, and to apply them as anticancer drugs or eye drops with excellent delivery efficiency. Nano-prodrugs are constructed by synthetic prodrugs molecules which contains poorly water-soluble substituent. They could be fabricated to nanoparticles with 100 nm or less in size by our reprecipitation technique, which has been used to create organic nanomaterials. We are aiming at practical application of our Nano-prodrugs in the near future.
実用化イメージ

Our reprecipitation technique for fabricating organic nanomaterials is a versatile technique that can be applied to various organic molecules as well as drug compounds. We hope to conduct collaborative research with a willing company on controlling and evaluating properties of the organic nanoparticles.

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Hitoshi Kasai

[organic scintillator]

High Sensitivity Radioactivity Measurement at Ultra-Low Radioactivity Environment

NEXT
PREV
特徴・独自性
  • Research Center for Neutrino Science established ultra-low radioactivity environment (trillion times lower than natural environment) with 1200 cubic-meter organic scintillator detector at 1000m underground where very stable temperature/humidity and low vibration are maintained. We are pursuing high sensitivity measurements, especially neutrino observation, and are also developing purification system for ultra-low radioactivity and high performance radioactivity detectors.
実用化イメージ

The established ultra-low radioactivity environment is suitable for rare phenomena study and is also applicable for high sensitivity radio-impurity measurement. It may also apply to investigation of biological influence of low radioactivity irradiation. The other applications such as neutrino detection technique for monitoring nuclear reactors and medical use of high sensitivity radioactivity detectors may also be considered.

Researchers

Research Center for Neutrino Science

Kunio Inoue

[organic semiconductor]

Advanced Technology on Flexible Liquid Crystal Displays

NEXT
PREV
特徴・独自性
  • Flexible liquid crystal displays using thin plastic film substrates instead of glass substrates contained in current liquid crystal displays, are bendable, thin, lightweight, and do not crack, and generate new usage styles and human interfaces due to their excellent storability and portability. We have been researching the basic technologies for large-screen and high-quality flexible displays using functional organic materials including liquid crystal and polymer, so that anyone can enjoy fertile information services.
実用化イメージ

We hope to conduct collaborative research with a willing company in industry, for development and practical application of the advanced flexible display technologies.

Researchers

Graduate School of Engineering

Hideo Fujikake

[Organic Thin Film]

Synthesis and material characterization of new organic ferroelectric materials, molecular semiconductors, molecular magnets.

NEXT
PREV
特徴・独自性
  • Multifunctional molecular-assemblies and hybrid organic - inorganic materials are examined from the viewpoint of structural freedom of organic molecules. The spin and electronic states of molecular-assemblies are designed in terms of electrical conductivity, magnetism, and ferroelectricity. Diverse molecular assemblies from single crystal, plastic crystal, liquid crystal, gel, to Langmuir-Blodgett film are our research targets, which were hybridized with inorganic gigantic clusters and metal nanoparticles. We are prepared to provide academic consultations to companies interested in our research.
実用化イメージ

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Tomoyuki Akutagawa

[organic-inorganic hybrid material]

Photo-Functional Advanced Materials for Nanofabrication by Nanoimprint Lithography

NEXT
PREV
特徴・独自性
  • Nakagawa group has dedicated to pursue scientific principles for molecular control of interface function occurring at polymer/other material interfaces and to put them into practice in nanoimprint lithography promising as a next generation nanofabrication tool. We are developing advanced photo-functional materials such as sticking molecular layers for "fix by light", UV-curable resins and antisticking molecular layers for "preparation by light", fluorescent resist materials for "inspection by light", and hybrid optical materials "available to light" and new research tools such as mechanical measurement systems to evaluate release property of UV-curable resins.
実用化イメージ

Our research aims at creating new devices to control photon, electron, and magnetism.

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Masaru Nakagawa

[Organization, Community]

Nonprofit Organizations and Social Capital

NEXT
PREV
特徴・独自性
  • Nonprofit organizations strive to solve community and social problems and to create new social values. Nonprofit organizations have the role to create citizenship and social capital - trust, norms and networks - in community. Social capital, an invisible and soft capital has increasingly become important to a sustainable management of an organization.
  • We hope to conduct collaborative research with willing corporations and organizations for measuring social capital at community/organizational levels and for making practical proposals on how to create and utilize social capital with viewpoints of partnership with nonprofit organizations and human resource development.
実用化イメージ

Researchers

Graduate School of Economics and Management

Yuko Nishide

[Organocatalysts]

Advanced Molecular Transformations by Organocatalysts

NEXT
PREV
特徴・独自性
  • The development of organic molecules which function as a catalyst has been extensively investigated to achieve selective and efficient transformation of organic molecules. Brønsted acids and bases are commonly employed as the catalyst in synthetic organic chemistry. To aim at their functionalization, axially chiral phosphoric acids and axially chiral guanidine bases have been developed as chiral Brønsted acid and base catalysts, respectively. A variety of optically active compounds has been synthesized through the development of highly stereoselective reactions using these catalysts.
実用化イメージ

The development of chiral Brønsted acid and base catalysts has been accomplished as recoverable and reusable organocatalysts and highly stereoselective molecular transformations have been established using these catalysts. The present methodology is applicable to process chemistry in preparing medicines and relevant compounds on the basis of the selective and efficient molecular transformations thus developed with reduction of the waste material.

Researchers

Graduate School of Science

Masahiro Terada