"O" Keywords - 50 Result(s)

 O

[oxide]

A novel crystal growth via controlling an energy relationship between crystal and melt with applying an electric field

NEXT
PREV
特徴・独自性
  • This lab is concerned with the novel approach mainly for the growth from melt by studying the relationship between the interface dynamics during growth and properties of grown crystals. Special interests lie in the growth of new crystals via the imposition of an interface-electric field. Nano-scaled control of crystal growth is executed in an electric double layer of ~nm thickness that is induced by applying an external electric field on the growth interface. Some of our growth results brought by applying an electric field are;
  • 1. Growth of Langasite-type crystals for the pressure sensor at high temperature by manipulating the energy relationship between crystal and melt.
  • 2. Easy nucleation of protein crystals that are normally hard to crystallize.
  • 3. Formation of Si crystals with desired structure by manipulating the interface instability of Si.
  • Crystals developed this way will widen an opportunity to collaborate with industries in the field of the piezoelectric, magnetic, optic and other fields related to the highly-networked information society.
実用化イメージ

Researchers

New Industry Creation Hatchery Center

Satoshi Uda

[Oxide electronics]

Oxide Electronics

NEXT
PREV
特徴・独自性
  • Our research group investigates creation of functional oxides and their functionalities. We synthesize thin films by pulsed laser deposition and sputtering methods and bulk specimens, and develop their novel synthetic routes. Recently, we are studying electrically conducting rare earth oxides, transparent room temperature ferromagnetic semiconductors, and layered superconductors with monatomic Bi layer. We will develop our materials design by extending materials range and performing oxide heteroepitaxy.
実用化イメージ

Collaborative research in fields of oxide electronics with novel electric conducting oxides and oxide spintronics with ferromagnetic semiconductors and novel ferromagnetic oxides.

Researchers

Graduate School of Science

Tomoteru Fukumura

[Oxide Nano-particles]

Development of Solid-State-Ionics Materials for Energy Conversion, Storage and Utilization

NEXT
PREV
特徴・独自性
  • Our focus is on the development of solid-state-ionics materials to be used for a variety of energy conversion systems. To further improve the performance of fuel cells and lithium batteries, novel ionic conductors and mixed conductors with high ionic conductivity and chemical stability are highly demanded. We have been developing such the materials based on defect chemistry and thermodynamics of ceramics, and trying to apply those materials to actual energy conversion devices.
実用化イメージ

To date, a hydrogen production system utilizing oxygen permeable membranes and an all-solid-state battery have been prepared.

Researchers

Graduate School of Engineering

Hitoshi Takamura

[oxide semiconductors]

Development of Interconnect Materials and Processes for High Performance and High Reliability Electric Devices

NEXT
PREV
特徴・独自性
  • Electronic products can be operated not only by semiconductors but also by metal interconnections attached to the semiconductors. Required properties for the metal interconnections are ohmic contact, diffusion barrier property, adhesion with semiconductors, and low resistivity, corrosion resistance, process reliability. Our group has committed ourselves to develop new metals and processes to meet the needs of wide-ranged device producers with consideration of cost performance. Topics of our research include (1) Cu alloys to self-form a diffusion barrier layer in multilayer interconnection of Si devices, (2) Cu alloys to form a reaction-doping layer in IGZO oxide semiconductors, (3) Nb alloys to achieve mechanical and thermal reliability with good ohmic property for SiC power devices, (4) Cu alloys for transparent conductive oxide such as ITO, (5) screen-printable Cu paste lines for solar cells, etc..
実用化イメージ

Our research efforts are targeted at metallization and interconnections for advanced LSI, flat panel displays, touch panels, power modules, solar cells, and other electronic devices. Collaborators include material producers, equipment vendors, and device producers in the entire value chain of electronic products.

Researchers

New Industry Creation Hatchery Center

Junichi Koike

Developing energy creation and saving materials

NEXT
PREV
特徴・独自性
  • Most innovations have been triggered by advent of new materials. We focus on to explore new inorganic materials and their synthesis routes on the basis of our knowledge about the material design and various materials processing technologies. We develop proton conducting phosphate glasses working at intermediate temperatures and narrow gap oxide semiconductors applicable in visible and NIR regions. Thin-film solar cells, fuel cells using those materials are also developing.
実用化イメージ

We focus on oxide semiconductors and proton conducting electrolytes and electrodes in order to apply them in solar cells, fuel cells, light-emitting devices. But, applicable area of our technologies is not limited in those applications.

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Takahisa Omata

[Oxide spintronics]

Oxide Electronics

NEXT
PREV
特徴・独自性
  • Our research group investigates creation of functional oxides and their functionalities. We synthesize thin films by pulsed laser deposition and sputtering methods and bulk specimens, and develop their novel synthetic routes. Recently, we are studying electrically conducting rare earth oxides, transparent room temperature ferromagnetic semiconductors, and layered superconductors with monatomic Bi layer. We will develop our materials design by extending materials range and performing oxide heteroepitaxy.
実用化イメージ

Collaborative research in fields of oxide electronics with novel electric conducting oxides and oxide spintronics with ferromagnetic semiconductors and novel ferromagnetic oxides.

Researchers

Graduate School of Science

Tomoteru Fukumura

[oxygen consumption]

INSTRUMENT AND METHOD FOR ANALYZING METABOLIC CONDITION OF LIVING BODY AND RECORDING MEDIUM

NEXT
PREV
特徴・独自性
  • AIMS: The invention is to analyze metabolic condition, especially in oxygen consumption and energy production in the adipose tissues of human (Patent: JP 3848818).
  • PROBLEM TO BE SOLVED: To provide an instrument and method for analyzing the metabolism condition of a living body which is constructed in such a manner that it can measure the metabolism condition of a living body correctly and easily, and a recording medium.
  • SOLUTION: A metabolism condition analyzer is provided with an input means for inputting information about the body of a subject, a control means for processing this information and an output means for outputting results of the processing. The information consists of name, age, sex, race, height, weight, bioelectric resistance value and the date and time of measurement. A data file consisting the control means stores evaluation data of a metabolic condition which is previously determined by medical judgment based on a combination of an internal respiration index and oxygen consumption and energy production in adipose tissues. These are computed by calculating the value obtained by subtracting one from a body density calculated from the height, weight of the subject and the bioelectric resistance value and then multiplying the value. Welcome to your investment or co-operation.
実用化イメージ

Researchers

Research Center for Accelerator and Radioisotope Science

Katsunori Nonogaki

[Oxygen Permeable Membrane]

Development of Solid-State-Ionics Materials for Energy Conversion, Storage and Utilization

NEXT
PREV
特徴・独自性
  • Our focus is on the development of solid-state-ionics materials to be used for a variety of energy conversion systems. To further improve the performance of fuel cells and lithium batteries, novel ionic conductors and mixed conductors with high ionic conductivity and chemical stability are highly demanded. We have been developing such the materials based on defect chemistry and thermodynamics of ceramics, and trying to apply those materials to actual energy conversion devices.
実用化イメージ

To date, a hydrogen production system utilizing oxygen permeable membranes and an all-solid-state battery have been prepared.

Researchers

Graduate School of Engineering

Hitoshi Takamura

[oxygen saturation]

Visualization of Biological Microstructure with High Frequency Ultrasound and Photoacoustic Imaging

NEXT
PREV
特徴・独自性
  • "Features"
  • High-resolution imaging of biological tissue is non-invasively obtained with high frequency ultrasound. We have developed some ultrasound microscope systems which realized the resolution of 15-micron with 100 MHz and resolution to visualize a single cell with GHz range ultrasound. Ultrasonic imaging provides not only tissue morphology but also information on tissue elasticity. Recently, we have developed a real-time three-dimensional photoacoustic imaging system for visualization of subcutaneous micro vasculature and oxygen saturation.
  • "Targeted Application(s)/Industry"
  • High frequency ultrasound and photoacoustic imaging is repeatedly and non-invasively applied for early diagnosis of atherosclerosis, skin aging and tissue metabolism. They are useful for efficacy assessment of cosmetics and pharmaceuticals. High frequency ultrasound is also applied in the industrial areas where thickness measurement of opaque film or bilayer thin coating with the precision of 0.1 micron is required.
実用化イメージ

Researchers

Graduate School of Biomedical Engineering

Yoshifumi Saijo

[Oxygen sensor]

Development of PHD-Targeted Drug for Ischemic Injury

NEXT
PREV
特徴・独自性
  • All the living organisms generate energy from molecular oxygen to maintain their own lives. Once the concentration of oxygen falls down, life activity gets severely hampered and it could sometimes cause death. Typical examples that are related to local hypoxia are ischemic heart disease, stroke and kidney disease.
  • We focus on the function of prolyl hydroxylase (PHD) as a sensor to detect the hypoxia, and we are developing drugs to treat ischemic injury by controlling hypoxia.
実用化イメージ

Currently, we have several compounds that inhibit the PHD. We want to commercialize in conjunction with pharmaceutical companies in Japan and overseas, advancing our non-clinical studies for clinical development.

Researchers

Graduate School of Medicine

Toshio Miyata