"R" Keywords - 51 Result(s)

 R

[Radiation Detector]

Development of Compound Semiconductor Radiation Detectors

NEXT
PREV
特徴・独自性
  • The main research subject of our group is developing material purification methods, crystal growth methods and detector fabrication technologies for compound semiconductor radiation detectors. Our group intensely studies a compound semiconductor, thallium bromide (TlBr), for fabrication of gamma-ray detectors for the advanced radiation applications. The attractive physical properties of TlBr lie in its high atomic number (Tl: 81, Br: 35), high density (7.56 g/cm3) and wide bandgap (2.68 eV). Due to the high atomic number and high density, TlBr exhibits high photon stopping power. The wide bandgap of TlBr permits the device low-noise operation at and above room temperatures.
実用化イメージ

Our group focuses on development of compound semiconductor radiation detectors for advanced radiation applications including ultra-high resolution PET systems, ultra-high resolution SPECT systems, photon counting CT systems and Compton cameras. We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.

Researchers

Graduate School of Engineering

Keitaro Hitomi

[radiation detectors]

Development of Novel Scintillator and Piezoelectric Crystals

NEXT
PREV
特徴・独自性
  • Our research target is mainly focused on the topic of development of novel scintillator crystals, piezoelectric crystals, growth technology, characterization and its device application.
  • We design and synthesize new materials from a view point of Crystal Chemistry, and investigate their structure and physical properties. We also study on photo-detector, as suitable photo-detector fully contribute to get maximum signal from scintillator. This activity is very important to realize practical application of our developed materials. Recently, piezoelectric material and high melting temperature alloy project is also started.
実用化イメージ

For the purpose of "real" contribution to human culture, we are always carrying out our research activity considering the industrial application. This point is unique feature of our attitude toward science.

Researchers

Institute for Materials Research

Akira Yoshikawa

[Rapid and low cost spacecraft development]

Design and Development of 50 kg-class Micro Satellites

NEXT
PREV
特徴・独自性
  • We design and develop micro satellites in a format of 50 cm cubic size and 50 kg mass. We have developed the first and second micro satellites of Tohoku University, named “RISING” and “RISING-2”, launched by using JAXA’s H-IIA rocket vehicle in January 2009 and May 2014, respectively. Both satellites are operated from our ground station in the university. Particularly, RISING-2 has succeeded in capturing high precision color images of the Earth's surface at a spatial resolution of 5m, the highest in the world among 50kg-class satellites. Now the third micro satellite for international science mission is under the development. In addition, we are active in nano satellite development. The first nano-sat “RAIKO” in a 10 by 10 by 20 cm format was launched from the International Space Station in 2012. More nano-sats are under the development.
実用化イメージ

We would like to make innovation in space business by introducing a new paradigm for rapid and low cost development of space systems for various missions of remote sensing, earth observation, and space exploration. We have rich experience in the development of spacecraft bus systems, onboard avionics systems and mission instruments. Collaborations with technology and business partners are welcome.

Researchers

Graduate School of Engineering

Kazuya Yoshida

[real-time]

Clinical Applications of Motion Capture System for Living Body

NEXT
PREV
特徴・独自性
  • We have developed a wireless motion capture system for living body that could non-invasively measure various biological movements without any contact. By utilizing the LC resonant magnetic marker due to the latest magnetic engineering technology, we have achieved a magnetic wireless system which could be used even in a shielded space such as oral cavity by applying a magnetic field from outside the body. By using the infrared reflective markers of small and light, we have also succeeded in developing an optical system capable of synchronous real-time measurement at up to 50 locations at 250 hertz.
実用化イメージ

This new system can three dimensionally analyze various biological movements and can be applied to such diagnostic and medical equipment that requires a motion analysis non-invasively without any contact. It is possible to specialize this system to suit the required conditions, so I would like to joint research with companies and organizations that want to take advantage of this system.

Researchers

Graduate School of Dentistry

Hiroyasu Kanetaka

[real-time analysis]

Measurement-Integrated Simulation to Analyze Complex Flows

NEXT
PREV
特徴・独自性
  • In order to obtain huge fluid information of real flows we are developing a new flow analysis methodology "measurement-integrated simulation" by integrating experimental measurement and computer simulation. Complex real flows are accurately reproduced by the effect of a feedback signal to compensate the difference between the measurement and calculation. This can be appliedto wide variety of complex flow problems, for example, real-time visualization of blood flows for medical diagnosis, flow analysis around automobile body, real-time monitoring of flow in a complex piping in a nuclear power plant.
  • We are prepared to provide academic consultations to companies interested in our research.
実用化イメージ

Researchers

Frontier Research Institute for Interdisciplinary Sciences

Toshiyuki Hayase

[Recombinant inbred mouse]

Development of Recombinant Inbred Mice with a Genetic Predisposition to Collagen Disease

NEXT
PREV
特徴・独自性
  • Eleven strains of recombinant inbred (RI) mice derived from MRL/lpr and C3H/lpr mice were established. This RI is the only one in the world that randomly develops lesions such as nephritis, arthritis, sialadenitis, vasculitis, and production of autoantibodies in each strain. The genomes of the two strains of mice are randomly held in homozygous condition, and the phenotypes of each strain and the effects of administered drugs could be compared based on their genotype maps. It is possible to identify the regions of gene loci involved in the phenotype and drug sensitivity.
実用化イメージ

Development of diagnostic and therapeutic agents for autoimmune diseases. It can be applied to the elucidation of the mechanism of onset of immunological adverse events caused by immune checkpoint inhibitors and the development of drugs to prevent the onset of such events, and industry-academia collaboration with pharmaceutical companies, test reagent companies, etc. is possible.

Researchers

Graduate School of Biomedical Engineering

Tetsuya Kodama

[recombinant protein design]

Peptide and Protein Designs for Unexplored Fileds

NEXT
PREV
特徴・独自性
  • I am proposing methodologies to design recombinant peptides and proteins with appropriate structures and functions in the medicinal, environmental, material, and nanotechnological fields, with molecular evolutional and domain shuffling engineering. At present, we have constructed the methodologies for efficient renaturation of functional proteins from inclusion bodies expressed in bacteria, generation of peptides and proteins with the function of biomineralization, generation of peptides and proteins with affinity for inorganic materials to spontaneously make linkages between various nanomaterials, and high enhancement of cellulolytic enzyme activity induced by nanoclustering design on nanomaterials.
実用化イメージ

We hope the business partners in the in the medicinal, environmental, material, and nanotechnological fields would be interested in my approaches and we could conduct effective collaboration research with them.

Researchers

Graduate School of Engineering

Mitsuo Umetsu

[reconfigurable circuit]

PVT-Variation-Aware VLSI System Based on Nonvolatile-Device/MOS-Hybrid Circuitry

NEXT
PREV
特徴・独自性
  • Nonvolatile devices, which can remain stored data without power supply, are generally used for ROM (Read-Only Memory) to store boot programs (the information to start up the computer and the basic instructions that operate it) in computers. One attractive feature is that it does not consume any static power while it remains stored data. ‘Nonvolatile logic' is a novel logic style that a nonvolatile device is used for not only a nonvolatile storage element such as ROM but also a logic-circuit element which is the basic component of a CPU and an entire system. By using the nonvolatile devices as storage elements of circuit-configuration information, we can realize a process-variation- aware logic circuit with small hardware overhead.
実用化イメージ

The proposed technique is effective for implementing high-performance and highly-reliable LSI fabricated with cutting-edge process technology. We expect we can conduct effective collaborative research in highly reliable VLSI-systems fields.

Researchers

Research Institute of Electrical Communication

Takahiro Hanyu

[recrystallization]

Room temperature bonding using thin metal films (Atomic Diffusion Bonding)

NEXT
PREV
特徴・独自性
  • Atomic diffusion bonding of two flat wafers with thin metal films is a promising process to achieve wafer bonding at room temperature. High surface energies of metal films and a large atomic diffusion coefficient at the grain boundaries and film surfaces enable bonding at room temperature without unusually high loading pressure. This technique, which enables bonding of any mirror-polished wafer, is gaining wider use for fabricating optical and electrical devices. Moreover, bonding of mirror polished metals and polymer sheets can be achieved, which further extends the application of this bonding technique.
実用化イメージ

Optical, power and electrical devices, MEMS, bonding of polymer sheets, metals, and ceramics for precision mechanical equipments.

Researchers

Frontier Research Institute for Interdisciplinary Sciences

Takehito Shimatsu

[Recycle]

Monomer-Recycle System of Biodegradable Plastics by Industrial Fungal Fermentation and Application of Fungal Biosurfactant Proteins to Nanoparticles for Medical Use

NEXT
PREV
特徴・独自性
  • In Japan, solid-phase fungal fermentation systems using the industrial fungus Aspergillus oryzae have been extensively used for producing fermented foods such as soy sauce and sake; the annual production volume of the products is over one million tons. The efficient enzymatic hydrolyzing systems are expected to be applicable to biological recycling of biodegradable plastics. We found that A. oryzae can effectively degrade polybutylene succinate-coadipate (PBSA) by the combination with an esterase (cutinase) CutL1 and novel surfactant proteins, RolA and HsbA that are attached to the surface of PBSA and then recruit CutL1. The recruitment of Cutl1 by the surfactants stimulated PBSA degradation.
実用化イメージ

The fungal biosurfactant protein is applicable to industrial recycling of biodegradable plastics and to production of immune-response free nano-particles for medical use.

Researchers

Graduate School of Agricultural Science

Keietsu Abe

[Recycling]

Development of Recycling Technology for High-Water Content Sludge by Using Fiber Materials

NEXT
PREV
特徴・独自性
  • The recycling rate of construction muds and sludge is very low because the water content of these muds is very high and direct reuse of them is very difficult. Therefore, a new recycling technology for high-water content sludge has been developed in this laboratory. This technology is called "Fiber-Cement-Stabilized Soil Method", and it uses fiber materials and cement. The main feature of this method is to mix the fiber materials with the sludge, and the fiber materials included in the soil produce several geotechnical merits.
実用化イメージ

The modified soils produced by this method can be used as ground materials for reinforced embankment of the river bank and soil structures because they have several features such as high failure strength, high failure strain high durability for drying and wetting and high dynamic strength.

Researchers

Graduate School of Environmental Studies

Hiroshi Takahashi

Process development using chemical reactions in high temperature/high pressure water; Super/subcritical fluid extraction technology

NEXT
PREV
特徴・独自性
  • Most of my research to date have been related to hydrothermal technology (e.g., super/subcritical water technologies), supercritical fluid (CO₂) and subcritical fluid (DME) extraction technologies, inorganic materials synthesis, coal chemistry, biomass conversion, microalgae extraction, and waste recycling. And I have a lot of experimence on the practial application of chemical engineering. The current research themes include spent lithium-ion battery recycling, waste plastic recycling, and automation and intelligence of chemical experiments.
実用化イメージ

Spent lithium-ion battery recycling and waste plastic recycling

Researchers

Graduate School of Engineering

Qingxin Zheng

[Reflective Display]

Development of the high-quality and low-power display system for ultra-realistic communications

NEXT
PREV
特徴・独自性
  • Recently, with a spread of high definition video streaming services and ubiquitous network, development of high-quality, ultra-realistic and low-power display systems has been demanded. We have been studying physical properties of liquid crystal materials, precise control technique of polarization, high performance liquid crystal display (LCD) devices and its application to the advanced display systems for the realization of new media such as electric paper display and digital signage display, and low-energy society. We established a polarization control technology which realizes a precise control of polarization with liquid crystal materials. By using this world-leading technology, we have been studying the control of the surface alignment of liquid crystal molecules and developed a wide-viewing angle and fast switching liquid crystal display, ultra-high definition field-sequential-color display (Fig. 1), ultra-low power reflective full-color display (Fig. 2) and large-size high-quality display system.
  • We are also studying the ultra-realistic display systems such as a spatial 3D display and a multiple directional viewing display based on the precise light control technique as a next generation interactive communication technologies (Fig.3). We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.
実用化イメージ

Researchers

Graduate School of Engineering

Takahiro Ishinabe

[regenerative medicine]

DIFFERENTIATION INDUCING METHOD ENABLING TUMORIGENESIS OF IPS CELLS TO BE SUPPRESSED

特徴・独自性
  • The present invention relates to a technique for differentiating iPS cells into target differentiated cells while suppressing tumorigenesis in the iPS cells. In use of a statin and a differentiation inducer, iPS cells are differentiated into target differentiated cells, whereby iPS cells can be differentiated into differentiated cells in which tumorigenesis is suppressed.
実用化イメージ

Researchers

Graduate School of Dentistry

Hiroshi Egusa

Method for efficient production of induced pluripotent stem cells utilizing cells derived from oral mucosa

特徴・独自性
  • We provide a technique which can produce induced pluripotent stem (iPS) cells with high establishment efficiency and imposes lower burden on patients. iPS cells can be produced efficiently with significantly increased establishment efficiency by selecting cells derived from the oral mucosa and introducing a reprogramming factor, which can induce the reprogramming of the cells into pluripotent stem cells, into the cells.
実用化イメージ

Researchers

Graduate School of Dentistry

Hiroshi Egusa

[regional fieldwork]

Theory and practice of energy design to drive decarbonization

概要

An indispensable function for decarbonized driving is energy data analysis, an energy car navigation system with both high spatial and temporal resolution. Higher spatial resolution facilitates the recharging and discharging of electric cars and inter-regional energy exchange. With the addition of up-to-the-minute energy data with high temporal resolution, it is possible to rationally and optimally combine the fluctuating output of renewable energy with the consumers. Data analysis, system design, and operation will lead to a carbon-neutral society.

従来技術との比較

Japan's first regional energy supply and demand database has been developed, allowing for detailed design of sustainable and resilient regional energy infrastructure layout and operation based on analysis of the current energy status of cities, towns, and villages nationwide.

特徴・独自性
  • Research experience as a Fulbright Scholar in the U.S. and familiarity with examples of social implementation in Europe.
  • Data-driven innovation research approach based on a vast regional energy supply and demand database.
  • Emphasis on regional fieldwork as a social entrepreneur solving social issues.
実用化イメージ

Putting Theory into Practice. Helping to build sustainable energy systems for new community development. Including the background of the local community, listening to the opinions of the residents, and guiding them to discussions that are relevant to today's issues. Thinking globally and acting within the community.

Researchers

Graduate School of Engineering

Toshihiko Nakata

[regional lymph node]

Development of an intranodal administration method

NEXT
PREV
概要

The response rate of systemic chemotherapy for metastatic lymph nodes is low. This invention presents the optimal values for solvent properties, especially viscosity, in a method for directly administering drugs to lymph nodes (lymphatic drug delivery system). In 2024, a specified clinical study (jRCTs021230040) on lymph node metastasis was started at the Iwate Medical University Hospital Head and Neck Cancer Center.

従来技術との比較

In systemic chemotherapy for metastatic lymph nodes, the amount of drug delivered to the metastatic lymph nodes is small. This is due to the increase in internal pressure caused by tumor growth in the lymph nodes and the disappearance of microvessels caused by the formation of tumor mass. In this invention, we clarified the optimal viscosity range of the solvent for the lymphatic drug delivery system, which directly administers drugs to lymph nodes.

特徴・独自性
  • The amount of anticancer drug required to treat one metastatic lymph node is 1/100 to 1/1000 of the systemic dose.
  • The drug can be administered into the lymph node under ultrasound guidance.
  • An international patent has been filed for the solvent of the administered drug.
実用化イメージ

1. Treatment and prophylactic therapy of affiliated lymph nodes in head and neck cancer, breast cancer, etc.
2. Pharmaceutical companies aiming to develop drugs by drug repositioning and generics
3. Medical device manufacturers aiming to develop a dosing system

Researchers

Graduate School of Biomedical Engineering

Tetsuya Kodama

[Reliability & Safety]

Innovative Preparing and Thick Coating Technique without Heat Affected Zone and Phase Transformation

NEXT
PREV
特徴・独自性
  • The cold spray (CS) technique is known as a new technique not only for coating but also for thick depositions. It has many advantages, i.e. dense coating, high deposition rate, low oxidation, and no phase transformation. We have been carrying out establishment of innovative preparing and coating techniques using the CS, and maintenance of reliability and safety of the cold sprayed repairing parts and coatings. Moreover, in order to evaluate the compatibility between a substrate material and particles based on an adhesion mechanism and scientific basis, various adhesion conditions are examined a micro / nano-structure observation and a molecular simulation.
実用化イメージ

Our targets were mainly hot section parts of thermal power plants and reactor piping and tubes etc. Recently, it is possible to make a ceramic coating. Therefore, we accelerate the evolution of the other fields including the creation of the functionality materials in near future.

Researchers

Graduate School of Engineering

Kazuhiro Ogawa

[Remote Operation]

Research and Development of Space Exploration Robots

NEXT
PREV
特徴・独自性
  • We study and develop mobile robotics technology for lunar and planetary exploration. Our technology is featured by rich experience in locomotion mechanisms for highly rough terrain and advanced slippage control in loose soil environment. Also by 3D map building technology using a laser scanner for autonomous collision avoidance and for operator assistance in remote control/tele-operation. We also contributed to the design and development of Hayabusa and Hayabusa-2, which are sample-return probes developed and operated by Japanese space agency JAXA.
実用化イメージ

These technologies are also applied to terrestrial robots for such as surveillance or disaster response.

Researchers

Graduate School of Engineering

Kazuya Yoshida

[Remote Sensing]

Design and Development of 50 kg-class Micro Satellites

NEXT
PREV
特徴・独自性
  • We design and develop micro satellites in a format of 50 cm cubic size and 50 kg mass. We have developed the first and second micro satellites of Tohoku University, named “RISING” and “RISING-2”, launched by using JAXA’s H-IIA rocket vehicle in January 2009 and May 2014, respectively. Both satellites are operated from our ground station in the university. Particularly, RISING-2 has succeeded in capturing high precision color images of the Earth's surface at a spatial resolution of 5m, the highest in the world among 50kg-class satellites. Now the third micro satellite for international science mission is under the development. In addition, we are active in nano satellite development. The first nano-sat “RAIKO” in a 10 by 10 by 20 cm format was launched from the International Space Station in 2012. More nano-sats are under the development.
実用化イメージ

We would like to make innovation in space business by introducing a new paradigm for rapid and low cost development of space systems for various missions of remote sensing, earth observation, and space exploration. We have rich experience in the development of spacecraft bus systems, onboard avionics systems and mission instruments. Collaborations with technology and business partners are welcome.

Researchers

Graduate School of Engineering

Kazuya Yoshida