Sorted by Keyword - 1938 word(s), 265 profile(s)

 W

[water]

Supercritical Fluid Technology Based on its Unique Properties

NEXT
PREV
特徴・独自性
  • We have investigated various physical properties of supercritical fluids and their mixture. The properties studied are density, viscosity, phase equilibria, solubility, etc. under high temperatures and pressures. Using these suprecritical fluid features, we have proposed their application technologies; such as extraction of natural resources, cleaning, drying, catalyst preparation, polymer processing, polymer recycling, biomass conversion and controlled delivery. The methodologies used are experiments, simulation and theretical ones.
実用化イメージ

Cleaning Technology: precision machinery component, optical component, etc.
Extraction of Natural Resources: food, supplements, aroma.
Polymer Processing: functional resin, electronic component, etc.

Researchers

New Industry Creation Hatchery Center

Hiroshi Inomata

[water electrolysis]

Metal complex catalysts for energy devices

NEXT
PREV
特徴・独自性
  • We have developed a new catalyst for fuel cells and metal-air batteries with using metal azaphthalocyanine unimolecular layer (AZUL) adsorbed on carbon materials. We applied it to variety of applications in the field of energy conversion and next generation energy devices.
実用化イメージ

Industries relating with energy and mobilities.

Researchers

Advanced Institute for Materials Research

Hiroshi Yabu

[Wear]

newDevelopment of a Numerical Prediction System for Sliding Part Wear and Seizure Occurrence Portions

NEXT
PREV
概要

Focusing on the lubricant film flow with phase change between the engine piston pin and connecting rod small end, we developed a new multiphase fluid-structure coupled analysis method that takes into account elastic deformation of the structure and flow path changes and developed a simulation prediction method for tribological properties under high load conditions. The simulation prediction method for tribological properties under high load conditions has been created. As a result, we succeeded in simulation prediction of the wear/seizure generating areas in sliding parts. We discovered that the peculiar deformation behavior of the components is the cause of wear/seizure.

従来技術との比較

It has been thought that computational prediction is impossible to verify the wear and seizure locations in fluid lubrication. Still, this study succeeded in the simulation prediction of wear and seizure locations in sliding parts.

特徴・独自性
  • Numerical prediction of the wear and seizure locations in the sliding parts of engine piston pins was successfully performed.
  • The bow-like deformation of the piston pin was identified as the cause of mechanical contact and seizure at the connecting rod edge.
  • A three-dimensional multiphase fluid-structure coupled analysis method has been successfully developed, considering the piston pin's elastic deformation and connecting rod and thin-film cavitation1 lubrication with unsteady flow path changes.
実用化イメージ

This research method applies to automotive engines and all sliding component elements using fluid lubrication. It contributes to damage prediction and the development of safety guidelines for transportation and industrial machinery components, enabling the optimal design of components.

Researchers

Institute of Fluid Science

Jun Ishimoto

[Wear resistance]

Development of High Performance Carbon Nanotube-Alumina Composite

NEXT
PREV
特徴・独自性
  • One of the important challenges in the development of carbon nanotubes (CNTs) reinforced ceramic composites is uniform dispersion of CNTs in the matrix. The mechanical properties of CNT/ceramics composites have been limited to date due to the formation of CNT agglomerates in the composite. We have successfully produced CNT/alumina composites with world top class strength and toughness, by employing a newly developed CNTs dispersion technique based on a flocculation method. The processing method developed in this study enables us to prepare high performance CNT materials using a pressureless sintering method.
実用化イメージ

The possible applications of the CNT/alumina composites developed in this study include tribological materials (ball bearing), biomaterials (artificial hip joint), micro-actuator materials utilizing electrostrictive effects, electromagnetic wave absorber, particularly in the frequency range of several GHz and several ten GHz.

Researchers

New Industry Creation Hatchery Center

Toshiyuki Hashida

Novel CoCr-based superelastic metallic biomaterial with low Young's modulus

NEXT
PREV
特徴・独自性
  • General metallic biomaterials, such as stainless steels and conventional CoCr alloys, show a high Young's modulus ten times higher than that of human bones. This is an unfavored feature because it causes the so-called "stress shielding effect" when they are used as implants. β-type Ti alloys have a relatively lower Young's modulus, but they come with a compromise of low wear resistance. The current novel CoCr-based alloys are a breakthrough; they exhibit both a low Young's modulus similar to human bones and a high wear and corrosion resistance. Moreover, they exhibit superelasticity with a huge recoverable strain over 17%, also showing promise as shape memory alloys.
実用化イメージ

It is the first time that a low Young's modulus, a high corrosion and wear resistance, and a superior superelastic behavior are simultaneously obtained in a single material. The current novel CoCr-based alloys are promising for biomedical applications such as total hip or knee joint replacements, bone plates, spinal fixation devices, and vascular stents.

Researchers

Graduate School of Engineering

Xiao Xu

[wearable sensor]

Development of Wearable Motion Measurement System for Motor Rehabilitation and Healthcare

NEXT
PREV
特徴・独自性
  • In order to realize wealthy and vibrant local communities, it is desired that people in the community are healthy. However, the amount of the daily activity decreases as they get older, which increases the risks of the fall by weakened lower limb muscles and of the cerebrovascular disease, and so on. Therefore, for the elderly people, there is increased need of the walking training and the movement assistance in daily life, and of the rehabilitation aid.
  • In this study, focusing on the motor function of the lower limbs that is important for independent activities of daily living and that relates to the health maintenance, development of assistive technologies for decreased gait ability or for dysfunction of lower limbs are performed based on the technologies of electronics and signal processing. Especially, the wearable sensor system using gyroscopes and accelerometers are developed to measure kinetic information, and then the evaluation system for the gait ability and the lower limbs motor function is developed in this study.
実用化イメージ

The goal of this study is to realize simple and convenient measurement and accumulation of various information of gait, to visualize the obtained data for determination of training effect and evaluation of motor function, and to provide appropriate training program for each subject.

Researchers

Graduate School of Biomedical Engineering

Takashi Watanabe

[Weld interface]

Design and control of new weld interface during welding of dissimilar materials

NEXT
PREV
特徴・独自性
  • Welding of dissimilar materials is an important process to manufacture the future structures and devices, but it is hard to produce the high-performance welds because the excessive reaction at the weld interface deteriorates the weld properties. Our group attempts to develop the new dissimilar welding process to yield the new interface with the aimed properties through design and control of interfacial reaction as well as usage of solid-state welding processes, such as friction stir welding and ultrasonic welding.
実用化イメージ

We hope to have collaborative researches with willing companies for practical application of welding of dissimilar materials, including metal/metal and metal/thermoplastic composite, in transportation, infrastructure, and energy industries.

Researchers

Graduate School of Engineering

Yutaka Sato

[Welding ]

Joule Heat Welding of Ultrathin Metallic Wires and its Application for Producing Functionality

NEXT
PREV
特徴・独自性
  • For producing a new functionality from metallic micro and nano matarials, the welding and cutting technologies for small scale materials utilizing Joule heat has been developed (Fig. 1). A constant direct current is supplied to the system, where the free ends of two metallic wires are contacted, and the ends are successfully welded together in self-completed manner. This technology is also useful for manipulating a small scale materials.
実用化イメージ

Joule heat welding technology enables us to produce the functional elements on the electrode chips, e.g., a free-standing micro-ring and very-thin thermoelectric element (Fig. 2). Moreover, we have developed the technique for characterizing the physical properties of small scale materials (Fig. 3). We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.

Researchers

Graduate School of Engineering Department of Finemechanics

TOHMYOH Hironori

Suppression of Intergranular Degradation of Polycrystalline Materials by Grain Boundary Engineering

NEXT
PREV
特徴・独自性
  • Intergranular degradation often results in decreased lifetime, reliability and economical efficiency of polycrystalline materials. In spite of persistent efforts to prevent such degradation, its complete suppression has not yet been achieved. Grain boundary studies have revealed that coincidence-site-lattice (CSL) boundaries have stronger resistance to intergranular degradations than random boundaries. The concept of ‘grain boundary design and control' has been refined as grain boundary engineering (GBE). GBEed materials which are characterized by high frequencies of CSL boundaries are resistant to intergranular degradations. Our group has achieved very high frequencies of CSL boundaries in commercial stainless steels by GBE. GBEed stainless steels showed significantly stronger resistance to intergranular corrosion (see Figs. 1 and 2), weld-decay, knife-line attack, stress corrosion cracking, liquid-metal embrittlement, radiation damage, etc. and much longer creep life (see Fig. 3) than the unGBEed ones.
実用化イメージ

By using this GBE processing, we expect to conduct effective collaborative research in related fields.

Researchers

Graduate School of Engineering

Yutaka Sato

[Welding and Joining]

Design and control of new weld interface during welding of dissimilar materials

NEXT
PREV
特徴・独自性
  • Welding of dissimilar materials is an important process to manufacture the future structures and devices, but it is hard to produce the high-performance welds because the excessive reaction at the weld interface deteriorates the weld properties. Our group attempts to develop the new dissimilar welding process to yield the new interface with the aimed properties through design and control of interfacial reaction as well as usage of solid-state welding processes, such as friction stir welding and ultrasonic welding.
実用化イメージ

We hope to have collaborative researches with willing companies for practical application of welding of dissimilar materials, including metal/metal and metal/thermoplastic composite, in transportation, infrastructure, and energy industries.

Researchers

Graduate School of Engineering

Yutaka Sato

[well crystallized alloy nanoparticle]

Morphology Control of Alloy Nanoparticles by Restrict Controlling of Metal Complex

NEXT
PREV
特徴・独自性
  • To apply the specific properties of nano materials for the industrial products, various technologies, such as synthesis method for single phase alloy nanoparticles which shows the effective activity for aimed reaction, that for well crystallized alloy nanoparticles which shows the resistively against for undesirable reaction, and that for single layered surface control method, etc, is developed by precise control of metal complexes in the solution by using the calculation and various research equipment including the photon factory.
実用化イメージ

Our technology can be useful for various industry which need the restrict control of surface properties, such as catalysts and electronics.

Researchers

Graduate School of Environmental Studies

Hideyuki Takahashi

[wheat]

Methods to Restore Strelity of Gramineous Plants under High- and Low-Temperature Stress Conditions

NEXT
PREV
特徴・独自性
  • Plant reproductive development is more sensitive than vegetative growth to many environmental stresses. High-temperature injury is becoming an increasingly serious problem due to recent global warming. In wheat, barley, and other crops, the early phase of anther development is most susceptible to high temperature. Oppositely, grain yields in rice plants are often reduced by exposure to low temperature. Unexpected climate change, such as abnormally hot or cool summer temperatures, have occurred repeatedly during recent years. This method indicates that an appropriate use of specific phytohormones, such as auxin and GA, may promote stress tolerance and adaptation to abiotic stresses.
実用化イメージ

These potentially novel functions of the classical phytohormones will be important sustainable agriculture in the face of global climate change.

Researchers

Graduate School of Life Sciences

Atsushi Higashitani

[WiFi]

Network Roaming System with Flexible Access Control

NEXT
PREV
特徴・独自性
  • The laboratory works on development of authentication wireless LAN systems which refer user attribute to realize flexible access control capability.Improvement and evaluation of new access control is devised based on experience of operation of an international wireless lan roaming service ‘eduroam' which is based on 802.1x authorization protocol.
実用化イメージ

The development contains application of OpenFlow technology to select a connecting network depending on user affiliation, as well as access control based on pre-defined attribute information.

Researchers

Organization for Innovations in Data Synergy

Hideaki Sone

[Wind Turbine]

Nonlinear Aeroelastic and Multibody Dynamic Analysis for Floating Wind Turbine and Next-Generation Aircraft

NEXT
PREV
概要

Floating wind turbine and next-generation aircraft have high-aspect-ratio blade and wing that undergo nonlinear aeroelastic deformation. We have developed a nonlinear aeroelastic analysis framework with absolute nodal coordinate formulation (ANCF). This nonlinear aeroelastic deformation is coupled with multibody dynamics. We are also developing a novel analysis framework for this coupling dynamics.

従来技術との比較

By using the nonlinear analysis method proposed in this study, it is possible to handle the reduction in flutter speed due to large deformations and the coupled phenomenon of deformation and flight behavior that cannot be captured using conventional linear analysis methods.

特徴・独自性
  • Straightforward nonlinear structural analysis method that does not use any rotational coordinates
  • Highly efficient unsteady fluid calculation method for large deformations
  • Multibody dynamics that captures the relative motion between bodies, such as rotating blades and control surfaces
実用化イメージ

Dynamic, aeroelastic, structural, vibration, aerodynamic analyses for Aeroelastic Multibody Systems:
1. Floating wind turbine
2. High altitude platform station (HAPS), high-aspect-ratio-wing commercial jet
3. Helicopter, drone
4. Robot, crane

Researchers

Graduate School of Engineering

Keisuke Otsuka

[Wireless]

Advanced Wireless Information Technology

NEXT
PREV
特徴・独自性
  • Toward the realization of a ubiquitous and broad-band wireless network, we are actively engaged in the research work on dependable and low power consumption advanced wireless IT. We cover the whole technical fields from the lower to higher layers, i.e., signal processing, RF/Mixed signal device, antenna, MODEM and network technologies.As the studies on signal processing, RF/Mixed signal device and antenna technologies, we are developing RF/Millimeter-wave RF CMOS IC's, antenna integrated 3-dimensional system in package (SiP) transceiver modules, digital/RF mixed signal IC's.
実用化イメージ

If you are interested in a collaborative research work on above topics, please contact us via e-mail.

Researchers

Research Institute of Electrical Communication

Noriharu Suematsu

[wireless LAN roaming]

Network Roaming System with Flexible Access Control

NEXT
PREV
特徴・独自性
  • The laboratory works on development of authentication wireless LAN systems which refer user attribute to realize flexible access control capability.Improvement and evaluation of new access control is devised based on experience of operation of an international wireless lan roaming service ‘eduroam' which is based on 802.1x authorization protocol.
実用化イメージ

The development contains application of OpenFlow technology to select a connecting network depending on user affiliation, as well as access control based on pre-defined attribute information.

Researchers

Organization for Innovations in Data Synergy

Hideaki Sone

[wireless sensor]

Magnetic Applications and Magnetic Materials

NEXT
PREV
特徴・独自性
  • The aim of our research are to obtain the high accuracy sensor system for the signals from the human body or electric devices and to obtain the system for approaching action to the human body by using the nano-scale controlled magnetic materials and by the development of the devices under the functions of the magnetics.
  • We studied the mechanism of obtaining the magnetic anisotropy of the magnetic thin films for the sensitive magnetic sensors. We obtained a non-metal probe for high frequency magnetic field, and confirmed the probe can measure the high frequency magnetic field with its phase information. In addition, 3D position detecting system using magnetic markers was studied to improve its position accuracy. The study about the magnetic actuator driven by the external magnetic field was carried out for biomimetic robots using the rotational magnetic field, and small wireless pumps were obtained and clarified for their application for an artificial heart-support pump.
実用化イメージ

<Medical Applications>
Motion system for capsule endoscope, Support system for endoscopic surgery, Position detecting system (motion capture), Wireless pump for artificial heart
<Sensors>
Magnetic field sensors, Strain sensors, Wireless sensors
<Materials>
Electrical steels of ultra low loss, Electrochemicaly produced materials (structure controlled in nano-scale)

Researchers

Research Institute of Electrical Communication

Kazushi Ishiyama

[word order]

Universal Design in Language Use

NEXT
PREV
特徴・独自性
  • My current research topic is "universal design in language use," with special reference to order in language and thought. In particular, I am investigating (1) similarities and differences in neural processing of languages with different basic word orders, (2) to what extent the order in non-verbal thought is affected by the order in language, and vice versa, and (3) what is the optimal order in human language and human thought, if any.
実用化イメージ

Although I am conducting basic research, I believe it helps develop (1) effective language teaching/learning methods, (2) rehabilitation programs for aphasia, (3) dynamic preservation of endangered languages/dialects, and so on.

Researchers

Graduate School of Arts and Letters

Masatoshi Koizumi

 X

[X-ray]

X-Ray Phase Imaging for High-Sensitive Non-Destructive Testing

NEXT
PREV
特徴・独自性
  • Conventional X-ray imaging methods that rely on X-ray attenuation cannot generate clear contrast in the observation of low-density materials such as polymers consisting of low-Z elements. However, the sensitivity to the materials can be improved drastically by X-ray phase imaging that detects X-ray refraction caused by the materials. X-ray Talbot or Talbot-Lau interferometry consisting of X-ray transmission gratings is now constructed in laboratories for X-ray phase imaging. X-ray phase tomography is also realized, enabling high-sensitive three-dimensional observation.
  • X-ray phase imaging can be utilized for X-ray non-destructive testing of industrial products and baggage that cannot be checked conventionally.
実用化イメージ

We aim at appending a phase-contrast mode to micro-CT apparatuses and developing screening apparatuses in production lines.

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Atsushi Momose

High-speed X-ray phase tomography with a millisecond-order temporal resolution

NEXT
PREV
特徴・独自性
  • We successfully realized millisecond-order X-ray phase tomography using a fringe-scanning method in grating-based X-ray interferometry. We obtained phase tomograms with a measurement time of 4.43 ms using a white synchrotron X-ray beam. The use of a fringe-scanning method enables us to achieve not only a higher spatial resolution but also a higher signal-to-noise ratio than that attained by the Fourier transform method. In addition, our approach can be applied to realize four-dimensional or high-throughput X-ray tomography for samples that can be rotated at a high speed.
実用化イメージ

Researchers

International Center for Synchrotron Radiation Innovation Smart

Wataru Yashiro