"P" Keywords - 104 Result(s)

 P

[photoacoustic imaging]

Visualization of Biological Microstructure with High Frequency Ultrasound and Photoacoustic Imaging

NEXT
PREV
特徴・独自性
  • "Features"
  • High-resolution imaging of biological tissue is non-invasively obtained with high frequency ultrasound. We have developed some ultrasound microscope systems which realized the resolution of 15-micron with 100 MHz and resolution to visualize a single cell with GHz range ultrasound. Ultrasonic imaging provides not only tissue morphology but also information on tissue elasticity. Recently, we have developed a real-time three-dimensional photoacoustic imaging system for visualization of subcutaneous micro vasculature and oxygen saturation.
  • "Targeted Application(s)/Industry"
  • High frequency ultrasound and photoacoustic imaging is repeatedly and non-invasively applied for early diagnosis of atherosclerosis, skin aging and tissue metabolism. They are useful for efficacy assessment of cosmetics and pharmaceuticals. High frequency ultrasound is also applied in the industrial areas where thickness measurement of opaque film or bilayer thin coating with the precision of 0.1 micron is required.
実用化イメージ

Researchers

Graduate School of Biomedical Engineering

Yoshifumi Saijo

[photolithography]

Hands-On Access Fabrication Facility –Open Facility for MEMS and Semiconductor Prototyping–

NEXT
PREV
NEXT
PREV
概要

We offer shared facility for the development of semiconductor prototypes equipped with 4-inch, 6-inch and some 8-inch wafer fabrication tools available on an hourly basis. Know-how accumulated at Tohoku University is available, and staff provide maximum support for prototyping. The service is performed at the 1,200 m2 Super Clean Room on the second floor of the Junichi Nishizawa Memorial Research Centre at Tohoku University. For information on equipment and fees, see our website.

従来技術との比較

More than 10 experienced technical staff assist customer's usages. Standard process conditions for each process, such as etching and deposition, are provided. allowing customers to start prototyping immediately. Various materials other than silicon can also be supported.

特徴・独自性
  • We support the development of devices and semiconductor materials such as MEMS, optical elements and RF components.
  • Technical consultation on devices and processes before and during prototyping is also available.
  • A
  • 'Prototype lab' for device packaging is also available.
  • The museums where you can learn about the history of semiconductors, measuring instruments and sensors are open.
  • As part of Technology Co-creation for Semiconductor of Tohoku University, we promote R&D of semiconductors and the development of human resources.
  • On-demand semiconductor human resource development programs for students and engineers are available.
  • As a member of the MEXT's Advanced Research Infrastructure for Materials (ARIM) program, we are involved in sharing facility and data.
実用化イメージ

More than 330 companies have used our shared facility since its launch in 2010, not only from device manufacturers such as MEMS, but also from manufacturers of materials, mechanical components and equipment. To date, we have successfully supported the commercialization of about 10 devices.

Researchers

Micro System Integration Center

Kentaro Totsu

[photopharmacology]

Imaging and photoregulation of biological functions

特徴・独自性
  • To properly understand the functions of biomolecules, it is essential to observe them under physiological conditions where the interactions with other biomolecules are preserved. Therefore, we are developing new functional molecules using both organic chemistry and protein science approaches, and working on the visualization and optical control of biomolecules and their functions. Especially, we have developed fluorescent probes that quantitate the concentration of biomolecules or ions in subcellular regions such as organelles and caged compounds and photoswitches that optically manipulate the biomolecular functions.
実用化イメージ

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Shin Mizukami

[Physical Exercise]

Smart Ageing Initiative

NEXT
PREV
特徴・独自性
  • In Japan, the percentage of elderly people aged 65 years or over was 23.1% in 2010. It is no doubt that Japan is the world's first super-aging society. In such a super-aging environment, it is necessary to form a society in which each individual can play an active role even as one becomes older in order to maintain and improve the quality of life of all people and to maintain a healthy society. In advanced brain science, research from the fields of brain function imaging, cognitive science, and psychology has been utilized with the aim of realizing a healthy aging society. Up to date information on various new technologies and related discoveries has been disseminated so that individuals can live a healthy life with peace of mind at every stage of aging, while maintaining and improving the health of their brain and mind in a diverse and complex society.
実用化イメージ

We believe to overcome super-aging environments is not only an object of public concern but also big business chances to create new industries.

Researchers

Institute of Development, Aging and Cancer

Ryuta Kawashima

[piezoelectric]

Performance enhancement and application development of energy harvesting materials by microstructure design

NEXT
PREV
特徴・独自性
  • To realize IoT society, it is required the sensors, which function without battery charge. We study on energy harvesting materials using our knowledge about materials mechanics and numerical simulation such as finite element method. We recently address to develop energy harvesting devices, which can recovery the unharnessed energy around us as electrical energy.
実用化イメージ

Researchers

Graduate School of Environmental Studies

Fumio Narita

[piezoelectric crystals]

Development of Novel Scintillator and Piezoelectric Crystals

NEXT
PREV
特徴・独自性
  • Our research target is mainly focused on the topic of development of novel scintillator crystals, piezoelectric crystals, growth technology, characterization and its device application.
  • We design and synthesize new materials from a view point of Crystal Chemistry, and investigate their structure and physical properties. We also study on photo-detector, as suitable photo-detector fully contribute to get maximum signal from scintillator. This activity is very important to realize practical application of our developed materials. Recently, piezoelectric material and high melting temperature alloy project is also started.
実用化イメージ

For the purpose of "real" contribution to human culture, we are always carrying out our research activity considering the industrial application. This point is unique feature of our attitude toward science.

Researchers

Institute for Materials Research

Akira Yoshikawa

[Piezoelectric device]

MEMS/Micromachines and Microfabrication Technology

NEXT
PREV
特徴・独自性
  • We are studying MEMS (Micro Electro Mechanical Systems) and related technologies, which are typically used for the input/output of information/communication devices, the safety of automobiles etc. Our representative topics include integrated sensors, piezoelectric devices, RF MEMS, micro energy devices and wafer-level packages. Our facilities are open-accessible and well equipped with a lot of tools for lithography, dry/wet etching, thin film deposition, wafer bonding, device mounting and evaluations, which can be operated by each researcher. Using these tools, a variety of MEMS are being prototyped. Also, new microfabrication tools are being developed by ourselves.
実用化イメージ

We are collaborating with many companies, from which visiting researchers are dispatched to our laboratory. We also accept companies which want to just use specific tools in our facilities. Consultation is always welcome.

Researchers

Graduate School of Engineering

Shuji Tanaka

[piezoelectric material]

Hands-On Access Fabrication Facility –Open Facility for MEMS and Semiconductor Prototyping–

NEXT
PREV
NEXT
PREV
概要

We offer shared facility for the development of semiconductor prototypes equipped with 4-inch, 6-inch and some 8-inch wafer fabrication tools available on an hourly basis. Know-how accumulated at Tohoku University is available, and staff provide maximum support for prototyping. The service is performed at the 1,200 m2 Super Clean Room on the second floor of the Junichi Nishizawa Memorial Research Centre at Tohoku University. For information on equipment and fees, see our website.

従来技術との比較

More than 10 experienced technical staff assist customer's usages. Standard process conditions for each process, such as etching and deposition, are provided. allowing customers to start prototyping immediately. Various materials other than silicon can also be supported.

特徴・独自性
  • We support the development of devices and semiconductor materials such as MEMS, optical elements and RF components.
  • Technical consultation on devices and processes before and during prototyping is also available.
  • A
  • 'Prototype lab' for device packaging is also available.
  • The museums where you can learn about the history of semiconductors, measuring instruments and sensors are open.
  • As part of Technology Co-creation for Semiconductor of Tohoku University, we promote R&D of semiconductors and the development of human resources.
  • On-demand semiconductor human resource development programs for students and engineers are available.
  • As a member of the MEXT's Advanced Research Infrastructure for Materials (ARIM) program, we are involved in sharing facility and data.
実用化イメージ

More than 330 companies have used our shared facility since its launch in 2010, not only from device manufacturers such as MEMS, but also from manufacturers of materials, mechanical components and equipment. To date, we have successfully supported the commercialization of about 10 devices.

Researchers

Micro System Integration Center

Kentaro Totsu

[piezoelectric sensors]

Development of Novel Scintillator and Piezoelectric Crystals

NEXT
PREV
特徴・独自性
  • Our research target is mainly focused on the topic of development of novel scintillator crystals, piezoelectric crystals, growth technology, characterization and its device application.
  • We design and synthesize new materials from a view point of Crystal Chemistry, and investigate their structure and physical properties. We also study on photo-detector, as suitable photo-detector fully contribute to get maximum signal from scintillator. This activity is very important to realize practical application of our developed materials. Recently, piezoelectric material and high melting temperature alloy project is also started.
実用化イメージ

For the purpose of "real" contribution to human culture, we are always carrying out our research activity considering the industrial application. This point is unique feature of our attitude toward science.

Researchers

Institute for Materials Research

Akira Yoshikawa

[Pig]

Development of Immunobiotic Evaluation System for Functional Feeds as a Livestock Animal Model

NEXT
PREV
特徴・独自性
  • Pattern recognition receptor (PRR) family plays an important role in the defense through recognition of pathogen-associated molecular patterns or microorganisms-associated molecular patterns (PAMPs/MAMPs).
  • Some functional feed materials are thought to regulate intestinal immunity by contact and stimulation of epithelial cells and immunocompetent cells via PRRs in the gastrointestinal tract and induction of cytokine production. In this "new world" of feed immunology, however, much remains unknown about the underlying mechanisms of intestinal immunity because of lack of appropriate intestinal immunoassay system for livestock animals.
  • We have advanced application of originally established porcine and bovine intestinal epitheliocytes (PIE, BIE) cell lines (see photo) for evaluation of immunobiotics and immunogenics exerting anti-inflammatory responses both in PIE cell monolayer and co-culture system with porcine peyer's patch immune cells as a peyer's patch culture model (see illustration).
実用化イメージ

This evaluation system may also contribute to elucidate immunoregulatory mechanism of immunobiotics and immunogenics mediated by pattern recognition receptors essential to future development of not only immunobiotic feeds but also vaccines using immunobiotics to prevent specific diseases. This can benefit mankind by offering immunobiotic feeds as a safer alternative to conventional antibiotic drug therapy.

Researchers

Graduate School of Agricultural Science

Haruki Kitazawa

[Pigment]

Colorful titanium oxide pigments without transition metals

概要

Colorful TiO2 Particle
https://www.t-technoarch.co.jp/data/anken_en/T19-849.pdf

従来技術との比較

Transition metal compounds are known to exhibit a wide variety of colors. Until now, it has been possible to color white titanium oxide by doping with transition metal ions, but it is difficult to avoid biotoxicity derived from transition metals.

特徴・独自性
  • In the present invention, titanium oxide inorganic pigments that do not contain transition metals and have various colors such as white, yellow, red, gray, green, purple, black, and skin color have been realized.
実用化イメージ

New applications of titanium oxide pigments are expected in the cosmetics field, where biotoxicity is an issue.

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Yin Shu

[Pistons]

Development of a Numerical Prediction System for Sliding Part Wear and Seizure Occurrence Portions

NEXT
PREV
概要

Focusing on the lubricant film flow with phase change between the engine piston pin and connecting rod small end, we developed a new multiphase fluid-structure coupled analysis method that takes into account elastic deformation of the structure and flow path changes and developed a simulation prediction method for tribological properties under high load conditions. The simulation prediction method for tribological properties under high load conditions has been created. As a result, we succeeded in simulation prediction of the wear/seizure generating areas in sliding parts. We discovered that the peculiar deformation behavior of the components is the cause of wear/seizure.

従来技術との比較

It has been thought that computational prediction is impossible to verify the wear and seizure locations in fluid lubrication. Still, this study succeeded in the simulation prediction of wear and seizure locations in sliding parts.

特徴・独自性
  • Numerical prediction of the wear and seizure locations in the sliding parts of engine piston pins was successfully performed.
  • The bow-like deformation of the piston pin was identified as the cause of mechanical contact and seizure at the connecting rod edge.
  • A three-dimensional multiphase fluid-structure coupled analysis method has been successfully developed, considering the piston pin's elastic deformation and connecting rod and thin-film cavitation1 lubrication with unsteady flow path changes.
実用化イメージ

This research method applies to automotive engines and all sliding component elements using fluid lubrication. It contributes to damage prediction and the development of safety guidelines for transportation and industrial machinery components, enabling the optimal design of components.

Researchers

Institute of Fluid Science

Jun Ishimoto

[plant]

Improvement of Seed Production by Using Reproductive Trait in Crops, Especially, Rice and Cruciferous Crops

NEXT
PREV
概要

The recent spate of extreme weather events is threatening to reduce crop seed and fruit production. We have identified a catalog of genes that respond under low and high temperature stress, and will construct a system that enables production under temperature stress through genome editing and other methods.

従来技術との比較

In addition to conventionally used genetic recombination methods, genome editing technology has made it possible to modify genes that can be used for practical purposes.

特徴・独自性
  • Crops are important for food, environment recovery, energy production, and amenity activity for human being. For improvement of crop seed production, the breeding of crops having environmental stress, is important. Especially the developmental stage from pollination to fertilization is quite weak for these environmental stresses. Thus, by breeding of reproductive trait, we will establish the high productivity and quality of crop seeds. From our research, we found several stress-tolerant genes. We already started the research by both basic and applied level.
実用化イメージ

For application, we evaluated by taking prize for application in 2001. And our basic data has been published in international Journal, "Nature" and "Science". If anyone is interested in these genes, we hope to conduct to collaborative research for establishing the useful breeding lines.

Researchers

Graduate School of Life Sciences

Masao Watanabe

[Plant activator]

Study on Molecular Mechanism for Plant Immune System

NEXT
PREV
特徴・独自性
  • Plants have immune system against pathogen infection. In our research group, isolation of disease resistance genes, analysis of signal transduction pathways for disease resistance and characterization of defense-related proteins have been performed so far. In addition, we produced transgenic plants expressing green fluorescent protein under the control of defense-inducible promoter, which will be useful to visualize the induction of defense system.
実用化イメージ

Our knowledge obtained from the study on the mechanism(s) for plant immune system and the reporter transgenic plants will be available for screening chemical compounds activating plant immune system (so-called "plant activator").

Researchers

Graduate School of Agricultural Science

Hideki Takahashi

[Plant pathogens]

Study on Molecular Mechanism for Plant Immune System

NEXT
PREV
特徴・独自性
  • Plants have immune system against pathogen infection. In our research group, isolation of disease resistance genes, analysis of signal transduction pathways for disease resistance and characterization of defense-related proteins have been performed so far. In addition, we produced transgenic plants expressing green fluorescent protein under the control of defense-inducible promoter, which will be useful to visualize the induction of defense system.
実用化イメージ

Our knowledge obtained from the study on the mechanism(s) for plant immune system and the reporter transgenic plants will be available for screening chemical compounds activating plant immune system (so-called "plant activator").

Researchers

Graduate School of Agricultural Science

Hideki Takahashi

[plasma agri]

Development of Nano-Medical-Agricultural Applied Technology Using Ion-Controlled Plasma

NEXT
PREV
特徴・独自性
  • Since we have developed the techniques (ion control plasma) to generate and control ions, electrons, reactive species (radicals) in the low temperature non-equilibrium plasmas which I can touch by hand, the composite materials using nanoparticles, nanocarbons, biological molecules are synthesized in the nano-electronics field, the minimally-invasive and highly-efficient drug/gene transfection systems are developed in the medical field, and bacteria and insects are killed by the plasma in place of pesticide in the agricultural field.
実用化イメージ

The ion-controlled plasmas are applied for the minimally-invasive gene transfection system, next-generation agricultural system, the electrode material of highly-efficient battery, and so on. We hope to conduct the collaborative research with a willing company for a practical application of the novel plasma nano-medical-agricultural applied technology in industry.

Researchers

Graduate School of Engineering

Toshiro Kaneko

[Plasma sterilization]

Development of next-generation sterilization method by a plasma flow at atmospheric pressure

NEXT
PREV
特徴・独自性
  • Plasma sterilization has been developed as an alternative sterilization method due to its chemical activity, operation at low temperature and atmospheric pressure, low power consumption, low cost and safety. We have studied a mechanism of chemical species generation and transport in a plasma flow and, the sterilization efficacy and mechanism for several plasma sources at atmospheric pressure, such as a microwave plasma flow, a dielectric barrier discharge in a tube and a water vapor plasma flow. We already clarified that the damages of outer membrane and destructions of the cytoplasmic membrane of Escherichia coli by exposure to the microwave plasma flow. Fig. 1 shows the effect of plasma exposure on the E. coli. When the E. coli was exposed to the plasma, the height of the E. coli decreased and the potassium leakage of cytoplasmic material increased. For sterilization in a tube, we also clarified that an induced flow in the narrow tube by DBD transports chemical species and sterilize the whole inside surface of a tube as shown in Fig. 2. We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.
実用化イメージ

Researchers

Institute of Fluid Science

Takehiko Sato

[Plasmon]

Development of Terahertz Semiconductor Devices Using Novel Nano-Heterostructures and Materials and their ICT Applications

NEXT
PREV
特徴・独自性
  • Terahertz coherent electromagnetic waves are expected to explore the potential application fields of future information and communications technologies. We are developing novel, ultra-broadband integrated signal-processing devices/systems operating in the terahertz frequency regime employing novel semiconductor nano-heterostructures and materials. We are challenging to develop room-temperature operating coherent and intense laser transistors and fast-response and highly sensitive detectors working for the next-generation beyond-5G terahertz wireless communications as well as safety and security terahertz imaging applications.
  • A. Ultimately-fast terahertz transistors utilizing graphene, carbon-based new material, and compound semiconductor heterojunction material systems:
  • Graphene-based novel terahertz photonics devices, breaking through the limit on conventional technology. Recently we have succeeded in single-mode terahertz lasing in a dual-gate graphene-channel laser transistor device at 100K. Moreover, we have succeeded in room-temperature terahertz coherent amplification in a dual-grating-gate graphene channel transistor promoted by current-driven graphene Dirac plasmon instability. The obtained maximal gain of 9% is four times as high as the quantum efficiency limit when terahertz photons interact directly with graphene electrons without excitation of graphene plasmons. These will be big steps towards realization of an intense, room-temperature operating graphene plasmonic terahertz laser transistors.
  • B. Frequency-tunable plasmon-resonant terahertz emitter and detectors and metamaterial circuits:
  • By using an original dual-grating-gate high-electron mobility transistor (DGG-HEMT) structure with InP-based material systems record-breaking ultrahigh-sensitive detection of terahertz radiation have been realized at room temperature.
実用化イメージ

By making full use of these world-leading device/circuit technologies, we are exploring future ultra-broadband 6G- and 7G-class wireless communication systems as well as spectroscopic/imaging systems for safety and security. We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.

Researchers

Research Institute of Electrical Communication

Taiichi Otsuji

[Plastic Deformation Capacity]

[plastic waste]

Developing plastic waste sorter using Terahertz waves and social implementation of sustainable recycling technology

NEXT
PREV
概要

This research utilizes the characteristics of terahertz waves, used in next-generation communications and autonomous driving, to identify the materials of plastic waste. It improves existing recycling technologies and can be applied to evaluate the quality of recycled plastics, ensuring stable production of high-quality recycled plastics. It enables easy development of devices to solve various issues in containers and packaging and automobile recycling, contributing to the realization of decarbonization and a circular economy.

従来技術との比較

Conventional plastic waste identification and sorting technologies use specific gravity sorting or near-infrared devices. Particularly, near-infrared sorting technology has accumulated an enormous amount of data and serves as the primary sorting technology in plastic recycling plants. However, near-infrared devices struggle with identifying black plastics, additives, and degradation. This technology uses terahertz waves to measure and evaluate transmission and absorption characteristics, allowing for identification of black plastics, additives, and degradation.

特徴・独自性
  • In recent years, there has been increasing global attention on plastic waste issues, such as marine pollution from drifting garbage and microplastics, the overseas export of plastic waste resources, and the increase in disposable containers like plastic bags and straws, especially due to the impact of COVID-19. There is growing demand for advanced identification and recycling of plastic waste materials, especially in the context of achieving the Sustainable Development Goals (SDGs) and realizing a circular economy.
  • The research group from Tohoku University, Shibaura Institute of Technology, and Shizuoka University has conducted research on the commercialization of advanced sorting devices for plastic packaging waste. We have successfully identified mixed plastics containing black plastics, additives, and flame retardants, which were difficult to identify with existing devices, by utilizing the characteristics of terahertz waves. We have also confirmed the ability of terahertz waves in assessing degradation caused by UV or long-term use. Furthermore, the method has been shown to be effective for distinguishing bioplastics, which is expected to see increasing demand in the future, in addition to plastic waste from container packaging, automobiles, and home appliances.
  • These identification technologies can be applied to properly sort plastic waste generated by the “The Plastic Resource Circulation Act,” enacted in 2022, contributing greatly to securing high-quality recycled resources through plastic waste resource recycling.
  • Our research group conducts interdisciplinary research with experts in various fields: social engineering, resource circulation (Professor Jeongsoo YU), optical engineering (Professor Tadao TANABE of Shibaura Institute of Technology and Professor Tetsuo SASAKI of Shizuoka University), information science and big data analysis (Associate Professor Kazuaki OKUBO), data collection and analysis, international cooperation (Specially Appointed Lecturer Gaku MANAGO), social experiments, and behavioral economics (Assistant Professor Xiaoyue LIU). We address the needs from social, economic, and environmental issues both domestically and internationally, working from diverse perspectives to solve challenges and contribute to the creation of a sustainable society. Collaboration and networking with private companies, government agencies, research institutions, and civic organizations are also expected.
実用化イメージ

This technology can be applied to the development of plastic waste identification and sorting devices from processes such as containers and packaging recycling, automobile recycling, and home appliance recycling, as well as the production and quality evaluation of recycled plastics.

Researchers

Graduate School of International Cultural Studies Graduate School of Environmental Studies Green Goal's Initiative, Tohoku University

Jeongsoo Yu