"P" Keywords - 88 Result(s)

 P

[Protein Structure Analysis]

Development and evaluation of various inhibitors and disinfectants for SARS-CoV-2

NEXT
PREV
特徴・独自性
  • Using the infectious SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2), we are evaluating and developing new therapeutic drug candidates as well as evaluating disinfectants. Further analyses such as mechanism of action and resistance may be applicable. Other pathogens, including influenza virus and drug-resistant bacteria, will be examined upon request and discussion. Through joint and collaborative research with domestic and overseas pharmaceutical companies and related companies, we have experience of their clinical application including basic research.
実用化イメージ

We support development and evaluation of various inhibitors and disinfectants for variants of SARS-CoV-2 as well as wild type.

Researchers

International Research Institute of Disaster Science

Eiichi Kodama

[Proton]

Quantum and Molecular Dynamic Simulations of Transport Phenomena in Fuel Cell

NEXT
PREV
特徴・独自性
  • It is necessary to grasp nanoscale transport phenomena of materials in polymer electrolyte fuel cell to improve its performance. In our laboratory, nanoscale transport phenomena are analyzed by large scale molecular dynamics simulations using a supercomputer system. As the present theme, the dependence of the materials or structures of polymer electrolyte membrane on the ability of proton transfer(Fig. 1), the ability of proton transfer or oxygen permeability of ionomer in catalyst layer(Fig. 2), and the mechanism of transport phenomena of a water droplet in a nano pore in gas diffusion layer or micro porous layer(Fig. 3), are analyzed in detail.
実用化イメージ

These research can be applied to the analysis of flow field in devices which have nanoscale structure, for instance, fabrication process of semiconductor, friction phenomena of such nanoscale devices or next generation batteries, as well as the field of fuel cell.

Researchers

Institute of Fluid Science

Takashi Tokumasu

[prototype]

Hands-On Access Fabrication Facility –Open Facility for MEMS and Semiconductor Prototyping–

NEXT
PREV
NEXT
PREV
概要

We offer shared facility for the development of semiconductor prototypes equipped with 4-inch, 6-inch and some 8-inch wafer fabrication tools available on an hourly basis. Know-how accumulated at Tohoku University is available, and staff provide maximum support for prototyping. The service is performed at the 1,200 m2 Super Clean Room on the second floor of the Junichi Nishizawa Memorial Research Centre at Tohoku University. For information on equipment and fees, see our website.

従来技術との比較

More than 10 experienced technical staff assist customer's usages. Standard process conditions for each process, such as etching and deposition, are provided. allowing customers to start prototyping immediately. Various materials other than silicon can also be supported.

特徴・独自性
  • We support the development of devices and semiconductor materials such as MEMS, optical elements and RF components.
  • Technical consultation on devices and processes before and during prototyping is also available.
  • A
  • 'Prototype lab' for device packaging is also available.
  • The museums where you can learn about the history of semiconductors, measuring instruments and sensors are open.
  • As part of Technology Co-creation for Semiconductor of Tohoku University, we promote R&D of semiconductors and the development of human resources.
  • On-demand semiconductor human resource development programs for students and engineers are available.
  • As a member of the MEXT's Advanced Research Infrastructure for Materials (ARIM) program, we are involved in sharing facility and data.
実用化イメージ

More than 330 companies have used our shared facility since its launch in 2010, not only from device manufacturers such as MEMS, but also from manufacturers of materials, mechanical components and equipment. To date, we have successfully supported the commercialization of about 10 devices.

Researchers

Micro System Integration Center

Kentaro Totsu

[psycholinguistics]

Universal Design in Language Use

NEXT
PREV
概要

My current research topic is "universal design in language use," with special reference to order in language and thought. In particular, I am investigating (1) similarities and differences in neural processing of languages with different basic word orders, (2) to what extent the order in non-verbal thought is affected by the order in language, and vice versa, and (3) what is the optimal order in human language and human thought, if any.

従来技術との比較

Many studies have reported that subject-object (SO) word order, where the subject (S) precedes the object (O), tends to have lower processing costs and is preferred by native speakers compared to object-subject (OS) word order. However, traditional studies have primarily focused on SO languages, such as Japanese and English, where SO word order is the grammatical default. As a result, it remains unclear whether the preference for SO word order reflects the basic word order of individual languages or more universal cognitive characteristics of humans.

特徴・独自性
  • To address this, we are conducting research on the cognitive processing of minority languages that use object-subject (OS) word order as their basic word order—specifically Kaqchikel and Truku, which have not been studied before. This research focuses on the relationship between “word order in language” and “order of thought.” The findings are then compared to the cognitive processing of Japanese and English.
  • For this purpose, experimental equipment is brought to the speakers’ regions (Guatemala and Taiwan) to conduct a variety of investigations and experiments, including behavioral experiments, eye-tracking, and brain function measurements. Additionally, for experiments requiring large, non-portable equipment such as MRI scanners, the speakers are invited to Japan for the studies.
実用化イメージ

Although I am conducting basic research, I believe it helps develop (1) effective language teaching/learning methods, (2) rehabilitation programs for aphasia, (3) dynamic preservation of endangered languages/dialects, and so on.

Researchers

Graduate School of Arts and Letters

Masatoshi Koizumi

[public policy]

Economics of Aging

特徴・独自性
  • I investigate on the economics of aging, the optimal social welfare policy, low fertility and so on not based on the historical and systematic approach but based on the neo-classical economic theory. I also use econometric method and statistical approach. I often estimate the future projections of the population, public finance, magnitude of private markets, the results of public policies.
  • I also research on the comparative studies on East Asia (Japan, China, Korea, Taiwan) and European (especially Scandinavian countries). I provide statistic data and information on the economic and political systems on the aging in Japan.
実用化イメージ

The future estimation on the financial status , market caused by low fertility and aging. The effective management of the medical institutions, social welfare systems, gender equality societies for the central and local government, research institutions, public enterprises, and financial Institutions.

Researchers

Graduate School of Economics and Management

Hiroshi Yoshida

[pulse laser]

Spintronics Devices and Materials

NEXT
PREV
特徴・独自性
  • Spintronics is a technology utilizing electron spin which provided magnetic sensor, nonvolatile magnetic memory, and so on. Our studies are as below.
  • Noble & Rare-earth free magnetic films with large perpendicular magnetic anisotropy. We achieved to develop various Mn-bases alloy films exhibiting high perpendicular magnetic anisotropy (Fig.1 ).
  • THz range observation of magnetization motion. We achieved to detect a motion of magnetization using pulse laser in time domain (Fig. 2).
  • Novel organic spin devices. We achieved to fabricate hybrid junction consisting of an organic layer sandwiched by two inorganic magnetic layers and to observe magnetoresistance effect.
  • Tunnel Magnetoresistive devices: We are developing TMR devices with Mn-Ga alloys films (Fig.3 ).
実用化イメージ

Magnetic memory and storage. Microwave and Terahertz wave. Magnetic sensors.
We hope to conduct collaborative research with a willing company for a practical application of these devices and materials in industry.

Researchers

Advanced Institute for Materials Research

Shigemi Mizukami

[PVA]

Biomodel for Development of Endovascular Treatment

NEXT
PREV
特徴・独自性
  • We perform in-vitro or computational researches for development of medical devices. We develop a model of artery or bone to evaluate medical devices. And we apply optimization way for development of medical devices. Our main target is, currently, stent, or catheter.
実用化イメージ

Our collaboration company can be; medical equipment, device, medical image, MEMS, standardization, medical training, or polymer.

Researchers

Institute of Fluid Science

Makoto Ohta

[PVC]

Chemical Recycling of Problematic Polymeric Wastes

NEXT
PREV
特徴・独自性
  • The Yoshioka Laboratory works on the recycling of various polymers by thermal and wet processes. Plastics such as poly(ethylene terephthalate) (PET), polyvinyl chloride (PVC), and high impact polystyrene (HIPS) cause serious problems during their recycling for the recycling process and the environment. However, these materials can also be seen as a resource for new materials. The decarboxylation of PET results in high yields of benzene that can be used as a chemical feedstock. Another important feature is the dehalogenation of flame retarded plastics and PVC. Dechlorinated plastic waste can be an important source for hydrocarbons, which can be used as fuels and chemical feedstock. The chemical modification of PVC offers the possibility of new materials with new properties. Modified PVC can be used as antibacterial material or as a material with ion exchange properties. The removal of brominated flame retardants from HIPS leads to higher recovery rates of styrene during thermal processing. When a wet process is used, the resulting flame retardant free HIPS can be reused.
実用化イメージ

We are eager to help companies to overcome their problems during recycling and recovery, and provide solutions for the treatment of waste materials.

Researchers

Graduate School of Environmental Studies

Toshiaki Yoshioka