"S" Keywords - 143 Result(s)

 S

[system design]

Theory and practice of energy design to drive decarbonization

概要

An indispensable function for decarbonized driving is energy data analysis, an energy car navigation system with both high spatial and temporal resolution. Higher spatial resolution facilitates the recharging and discharging of electric cars and inter-regional energy exchange. With the addition of up-to-the-minute energy data with high temporal resolution, it is possible to rationally and optimally combine the fluctuating output of renewable energy with the consumers. Data analysis, system design, and operation will lead to a carbon-neutral society.

従来技術との比較

Japan's first regional energy supply and demand database has been developed, allowing for detailed design of sustainable and resilient regional energy infrastructure layout and operation based on analysis of the current energy status of cities, towns, and villages nationwide.

特徴・独自性
  • Research experience as a Fulbright Scholar in the U.S. and familiarity with examples of social implementation in Europe.
  • Data-driven innovation research approach based on a vast regional energy supply and demand database.
  • Emphasis on regional fieldwork as a social entrepreneur solving social issues.
実用化イメージ

Putting Theory into Practice. Helping to build sustainable energy systems for new community development. Including the background of the local community, listening to the opinions of the residents, and guiding them to discussions that are relevant to today's issues. Thinking globally and acting within the community.

Researchers

Graduate School of Engineering

Toshihiko Nakata

[systemic chemotherapy]

Development of an intranodal administration method

NEXT
PREV
概要

The response rate of systemic chemotherapy for metastatic lymph nodes is low. This invention presents the optimal values for solvent properties, especially viscosity, in a method for directly administering drugs to lymph nodes (lymphatic drug delivery system). In 2024, a specified clinical study (jRCTs021230040) on lymph node metastasis was started at the Iwate Medical University Hospital Head and Neck Cancer Center.

従来技術との比較

In systemic chemotherapy for metastatic lymph nodes, the amount of drug delivered to the metastatic lymph nodes is small. This is due to the increase in internal pressure caused by tumor growth in the lymph nodes and the disappearance of microvessels caused by the formation of tumor mass. In this invention, we clarified the optimal viscosity range of the solvent for the lymphatic drug delivery system, which directly administers drugs to lymph nodes.

特徴・独自性
  • The amount of anticancer drug required to treat one metastatic lymph node is 1/100 to 1/1000 of the systemic dose.
  • The drug can be administered into the lymph node under ultrasound guidance.
  • An international patent has been filed for the solvent of the administered drug.
実用化イメージ

1. Treatment and prophylactic therapy of affiliated lymph nodes in head and neck cancer, breast cancer, etc.
2. Pharmaceutical companies aiming to develop drugs by drug repositioning and generics
3. Medical device manufacturers aiming to develop a dosing system

Researchers

Graduate School of Biomedical Engineering

Tetsuya Kodama

[Systems Biology]

The intersection between the skeleton and metabolism

NEXT
PREV
概要

Beyond the classic function of bone, bone cells have been shown to regulate whole energy metabolism through bone-derived factors (osteokines). However, much of the research done to elucidate the pathophysiology of metabolic dysfuntion uses the classical approach of studying organs obviously implicated in energy metabolism. When Looking at the importance of skeletal integrity through the lens of evolution, we find that bone served a survival function. Humans had to consistently be mobile to look for food and shelter. Furthering this logic reveals that bone and energy metabolism are entwined. Therefore, this project aims to 1. identify bone factors that are associated with metabolic conditions and 2. to bridge our knowledge of the skeletal system represented by its cell types and our understanding of energy metabolism of the organism into one integrated subject.

従来技術との比較

Our research project offers a transformative advantage over conventional approaches by thinking with the end in mind (i.e translational potential) . We employ a multi-omics approach that goes beyond the conventional focus on single layers of biological information that will deepen our understanding of metbaolic diseases and accelerates identifying novel biomarkers and therapeutic targets.

特徴・独自性
  • Interdisciplinary approach
  • Multi-omics integration
  • Translatioal potential
実用化イメージ

Our research offers potential for early diagnostics, novel biomarkers, and personalized therapeutic approaches for conditions like diabetes, osteoporosis, and diabetic osteoporosis. Our work fosters interdisciplinary collaboration and inspires future translational research and RnD with industrial partners.
This work promotes public awareness of the importance of bone health and ultimately aims to deliver tangible societal benefits.

Researchers

Frontier Research Institute for Interdisciplinary Sciences

Aseel Mahmoud Suleiman Marahleh